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ABSTRACT Measurement error (imperfect reliability) is present in any empirical effect size estimate and system-
atically attenuates observed effect sizes compared to true underlying effect sizes. Yet there exist broad concerns that
proper measurement tends to be neglected in much of psychological research. We examined how measurement error
in primary studies affects meta-analytic heterogeneity estimates using Monte-Carlo simulations. Our results indicate
that although measurement error in primary studies can both inflate and suppress heterogeneity, under most circum-
stances measurement error in primary studies leads to a severe underestimate of heterogeneity in meta-analysis. Our
simulations showed expected heterogeneity to be underestimated by about 15% - 60% when considering a typical
effect size around r = 0.2 and true heterogeneity levels that are common in the meta-analytic literature (�>0.1, in
Pearson’s r). The underestimate primarily depends on average reliability in primary studies (higher reliability leads
to a smaller underestimate), but also worsens with smaller primary study sample sizes. We observed a positive bias
in heterogeneity estimates due to measurement error only under specific and arguably uncommon circumstances
of (1) actual zero heterogeneity, particularly when mean effect sizes are large, or (2) combinations of very small
true heterogeneity, large variance in primary study reliabilities, large mean effect sizes, and a limited number of
primary studies. Severe underestimates of heterogeneity due to measurement error may affect many meta-analyses
in psychology and obscure true differences between studies that could be relevant for theory, practice, and future
research efforts. Research on concrete guidance to applied meta-analysts is needed, as sophisticated methods for cor-
recting measurement unreliability such as meta-analytic structural equation modeling (MASEM) are only applicable
in exceptional cases and corrections based on classical test theory come with caveats and strong assumptions.

All code and data for this project are available on the Open Science Framework (OSF) at https://osf.io/tg68 and
permanently archived at Zenodo (doi.org/10.5281/zenodo.8052030).
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Estimating heterogeneity of effect sizes is usually
considered the main purpose of meta-analysis, alongside
estimating an average effect size. Heterogeneity of effect
sizes (henceforth referred to as heterogeneity) refers to
an effect size’s sensitivity to variability in study design
features related to the type of (1) sample, (2) setting,
(3) treatment variable, and (4) measurement (e.g., Cook
et al., 2002). Heterogeneity is an important outcome in
meta-analysis for several reasons. First, its presence sig-
nals the existence of moderators and so can be seen as an
opportunity for theoretical development (Simons et al.,
2017). Second, heterogeneity affects the implementation
of research by indicating that an intervention may not
be equally effective under all conditions or for everyone.
Third, the presence of heterogeneity changes the inter-
pretation of the average effect size derived in a meta-
analysis from the true population effect size (under ho-
mogeneity) to the average of true subpopulation effect
sizes (under heterogeneity). As such, estimating hetero-
geneity with minimal bias is of central importance to
meta-analysis (for a more extensive discussion on the
importance of heterogeneity, see Olsson-Collentine et
al., 2020; Simons et al., 2017).

Meta-analytic estimates depend on the quality of
data in primary studies. However, there is concern that
researchers in psychology tend to neglect proper mea-
surement (Flake & Fried, 2020) to the extent that psy-
chology can be said to be in a measurement crisis (Kane
et al., 2021). For example, Flake et al. (2017) report
that although latent constructs are widely examined in
personality and social psychology, researchers barely re-
port any of the validity evidence required to ascertain
the extent to which implemented scales measure the con-
structs of interest. Such inattention to measurement can
also bias heterogeneity estimates. We will focus here
on the reliability of measurement [defined in classical
test theory as the ratio of true score variance to mea-
surement error variance; e.g., Lord et al. (1968)], which
is the only evidence on measurement quality that re-
searchers report consistently (Flake et al., 2017), and
which can be corrected for in meta-analysis (Hedges &
Olkin, 1985; Schmidt & Hunter, 2015) .

Measurement error (imperfect reliability) is present
in any empirical effect size estimate and systematically
attenuates observed effect sizes compared to true
underlying effect sizes (Spearman, 1904). This affects
heterogeneity estimates, which from a statistical per-
spective, estimate the variance between true effect sizes.
However, reliability is not necessarily accounted for
in heterogeneity estimates, because ‘true’ underlying
effect sizes generally refer to two different entities:
Either effect sizes free from sampling error, or effect
sizes free from both sampling error and measurement
error. Whereas all meta-analytic models attempt to
correct for sampling error in their estimates, correcting

for measurement errors is explicitly modelled (alongside
other measurement artifacts) only in the psychometric
meta-analysis approach by Schmidt & Hunter (2015).
This has consequences for heterogeneity estimates
reported in many areas of psychology. Inattention to
measurement reliability and how it affects heterogene-
ity estimates can lead meta-analysts to misinterpret
their average effect size estimate, ignore the presence
of theoretically or practically relevant moderators or
search for (and discover) non-existent moderators,
over-generalize outcomes, and implement research
interventions inappropriately.

Meta-analyses in psychology rarely correct for
unreliability in primary study measurements. Wiernik
& Dahlke (2020) reported that among the 71 meta-
analytic studies published in the journal Psychological
Bulletin between 2016 and 2018, only 6/71 (8%)
corrected for unreliability. Similarly, Schmidt (2010)
reported that only 19/199 (10%) of the meta-analytic
studies published in the same journal between 1978
- 2006 corrected for any measurement artifacts. The
exception is the subfield of industrial-organizational
studies, where corrections tend to be more common
(e.g., Aguinis et al., 2011; Cortina, 2003).

One reason that few meta-analysts correct for un-
reliability could be that correcting for unreliability has
long been controversial (for arguments spanning the last
century, see Table 2 of LeBreton et al., 2014). On the
one hand, correcting for unreliability is seen by some as
conceptually problematic because it inflates effect size
estimates to match a hypothetical and unachievable sce-
nario of perfect measurement (e.g., Seymour (1988); Le-
Breton et al. (2014)]. Systematically correcting for un-
reliability may also lead to an overestimation of effect
sizes, because reliability estimates are lower bound esti-
mates of the true reliability (i.e., a reliability estimate of
0.8 implies the reliability is between 0.8 - 1). Even worse,
the most popular estimate of reliability in psychology
[Cronbach’s Alpha; Flake et al. (2017)], as well as im-
provements thereof, tend to underestimate this lower
bound of reliability (Sijtsma, 2008). Moreover, from a
pragmatic meta-analytic perspective, effect sizes appear
to often be overestimated in psychology (e.g., Kvarven
et al., 2019; Schäfer & Schwarz, 2019; Scheel et al., 2021)
due to selective reporting based on the significance of
outcomes (Simmons et al., 2011) and publication bias
(Thornton & Lee, 2000), so correcting for unreliability
may inflate meta-analytic estimates even further and
lead to estimates further from their true values rather
than closer. On the other hand, researchers in psychol-
ogy are typically interested in latent constructs rather
than observed measures. As such, neglecting measure-
ment errors means that computed estimates do not cor-
respond to the entity of interest. From this perspective,
correcting for unreliability is desirable even if doing so is
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Table 1: Variance in reliability inflates true heterogeneity

Observed Effect Sizes
Study 1 Study 2 Study 3

Meta-Analysis 𝜌𝑥𝑦 √𝑅𝑥𝑥′ ×√𝑅𝑦𝑦′ = .6 √𝑅𝑥𝑥′ ×√𝑅𝑦𝑦′ = .7 √𝑅𝑥𝑥′ ×√𝑅𝑦𝑦′ = .8 SD(ES)
I 0.0 0.00 0.00 0.00 0.00
II 0.3 0.18 0.21 0.24 0.03
III 0.5 0.30 0.35 0.40 0.05

Note: Reproduced from Olsson Collentine et al. (2020). The values under Study 1, 2 and 3 are ob-
served effect sizes for that study given its measurement reliability √𝑅𝑥𝑥′ × √𝑅𝑦𝑦′ and the true effect
size 𝜌𝑥𝑦 when within-study sample size is infinite. SD (ES) is the standard deviation of the observed ef-
fect sizes for meta-analysis I, II and III, equivalent to heterogeneity given infinite within-study sample
sizes. As true heterogeneity is absent, any SD(ES) values above zero represent bias. Code to reproduce
table: osf.io/f5eyc.

challenging (e.g., Oswald et al., 2015; Schmidt & Hunter,
2015), although treating disattenuated effect sizes as
directly comparable to latent scores requires strong as-
sumptions (Borsboom & Mellenbergh, 2002). In the end,
whether correcting for unreliability or not, authors and
consumers of meta-analyses need to be aware of how
unreliability of measurement affects heterogeneity esti-
mates. Schmidt & Hunter (2015) assert that failure to
control for variation in unreliability across studies re-
sults in a large overestimate of heterogeneity (p. 159),
but little systematic research has been done to study
the effects of unreliability on estimating heterogeneity.

Bias in heterogeneity estimates due to
unreliability
In classical test theory (CTT), reliability of measure-
ment (𝑅𝑥𝑥) is defined as the proportion true score
variance (𝜎2

𝑇 ) to observed score variance (𝜎2
𝑋) and is

presumed to be constant for all participants in a sample
𝑅𝑥𝑥 = 𝜎2

𝑇 /𝜎2
𝑋. We use unreliability of measurement to

refer to 1 − 𝑅𝑥𝑥. Imperfect reliability in measurements
leads to attenuation of observed effect sizes. For
product-moment correlations the observed correlation
can be computed as 𝑟𝑥𝑦 = 𝜌𝑥𝑦 × √𝑅𝑥𝑥′ × √𝑅𝑦𝑦′ where
𝑟𝑥𝑦 is the observed correlation between the variables
𝑋 and 𝑌 , 𝜌𝑥𝑦 is the true correlation (with or without
sampling error) and 𝑅𝑥𝑥′ and 𝑅𝑦𝑦′ are the measure-
ment reliabilities for 𝑋 and 𝑌 . As such, correcting for
unreliability is straightforward for product-moment
correlations, but can also be done for other effect
size types (Wiernik & Dahlke, 2020). A corrected
correlation should also have its sampling variance cor-
rected. This is inflated by a factor equal to the square
of the reliabilities, such that if 𝑎 = √𝑅𝑥𝑥′ × √𝑅𝑦𝑦′

then the corrected sampling variance 𝑉𝜌 = 𝑉𝑟/𝑎2

(e.g., Borenstein, 2009, p. 343). Reliability is usually

assumed to be known (but see Charles, 2005; Raju et
al., 1991). Imperfect reliability in primary studies can
both increase and suppress true heterogeneity.

Heterogeneity is inflated in heterogeneity estimates
of uncorrected effect sizes due to the variability in re-
liability between primary studies. This is because the
attenuation in effect size will then differ from study to
study, which results in differences across studies in ob-
served effect sizes beyond their true variability. This
is most easily illustrated by assuming a common true
effect size 𝜇 across studies (i.e., a fixed effect and no
true heterogeneity) and infinite sample size within stud-
ies. Any observed effect size ̂𝜇 can then be seen as the
true effect size 𝜇 multiplied by a study’s reliability 𝑅𝑖
(assuming 𝑅𝑖 = 𝑅𝑥𝑥’ = 𝑅𝑦𝑦’). Hence, the distribution
of observed effect sizes is the true effect size 𝜇 multi-
plied by the distribution of reliabilities across studies.
That is, ̂𝜇 ∼ 𝜇 × 𝑁(�̄�,𝜎𝑅) = 𝑁(𝜇�̄�,𝜇𝜎𝑅), where �̄� is
the average reliability across studies and 𝜎𝑅 its stan-
dard deviation. Because reliability lies between 0 – 1,
under these conditions imperfect reliability implies that
the observed average effect size will be less than the
true effect size by a factor �̄� and estimated heterogene-
ity will be larger than true heterogeneity (i.e., zero) by
the product of 𝜇 × 𝜎𝑅 (if heterogeneity is expressed as
standard deviation rather than variance). That is, vari-
ability in reliability across studies is a force that inflates
heterogeneity depending on the size of the true effect
size. Table 1 illustrates this effect for three studies with
differing reliability and zero true heterogeneity.

Heterogeneity is suppressed in heterogeneity esti-
mates of uncorrected effect sizes because in absolute
terms larger effect sizes are more attenuated by a
given reliability. That is, although the attenuation
formula 𝑟𝑥𝑦 = 𝜌𝑥𝑦 × √𝑅𝑥𝑥′ × √𝑅𝑦𝑦′ implies that
any effect size 𝜌𝑥𝑦 will be attenuated by the same
proportion given the same reliabilities √𝑅𝑥𝑥′ ×√𝑅𝑦𝑦′ ,
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Table 2: Imperfect reliability suppresses true heterogene-
ity

Observed Effect Sizes

√𝑅𝑥𝑥′ ×√𝑅𝑦𝑦′ Study 1 Study 2 Study 3 SD(ES)

1 0.1 0.15 0.2 0.05
0.8 0.08 0.12 0.16 0.04
0.6 0.06 0.09 0.12 0.03

Note: The values under Study 1, 2 and 3 are observed
effect sizes for that study given the measurement reliability
√𝑅𝑥𝑥′ × √𝑅𝑦𝑦′ and the true effect size of that study (first
row) when within-study sample size is infinite. SD (ES) is the
standard deviation of the observed effect sizes, equivalent to
heterogeneity given infinite within-study sample sizes. Code
to reproduce table: osf.io/f5eyc.

this proportion corresponds to a larger absolute value
for larger effect sizes. Consequently, in the presence
of heterogeneity attenuation will move larger true
effect sizes further towards zero than smaller ones,
decreasing heterogeneity in observed effect sizes. This
suppression can be observed directly by assuming
an average effect size 𝜃 with some heterogeneity 𝜏2,
infinite sample size within studies (i.e., no within-study
sampling variance), and equal reliability across studies
(𝑅 = 𝑅𝑖 = 𝑅𝑥𝑥′ = 𝑅𝑦𝑦′). Any observed effect size ̂𝜃𝑖 can
then be seen as a study’s true effect size 𝜃𝑖 multiplied
by the study reliability 𝑅. Hence, the distribution of
observed effect sizes is the distribution of true effect
sizes 𝑁(𝜃,𝜏2) multiplied by the reliability 𝑅, such that
𝑅 × 𝑁(𝜃,𝜏2) = 𝑁(𝑅𝜃,𝑅2𝜏2) = 𝑁(𝑅𝜃,𝑅𝜏). Because
reliability lies between 0 – 1, under these conditions
imperfect reliability implies that both the observed
average effect size and the estimated heterogeneity
will be less than their true value by a factor �̄� (if
heterogeneity is expressed as standard deviation
rather than variance). This depiction is not entirely
correct for Pearson’s 𝑟 as it is bounded at {-1, 1},
but holds approximately if the mean effect size 𝜃 and
heterogeneity 𝜏2 are not too large. Hence, imperfect
reliability in studies can be expected to suppress
heterogeneity estimates whenever true heterogeneity
is present. Consider an average reliability of 0.8 [the
median reported reliability in psychology; Flake et al.
(2017)]. Then, 0.8 × 𝑁(𝜃,𝜏) = 𝑁(0.8𝜃,0.8𝜏), resulting
in 20% less standard deviation among observed effect
sizes than in true effect sizes. Table 2 illustrates this
relationship for infinite sample size (i.e., no sampling
variance) and three levels of reliability across three
studies.

It is difficult to predict if the total effect is a neg-
ative or positive bias in heterogeneity due to unrelia-
bility, and existing literature tends to focus on the in-
flation of heterogeneity (e.g., Borenstein, 2009, p. 342;

Card, 2015, p. 126; Schmidt & Hunter, 2015; Wiernik &
Dahlke, 2020). However, given the value of accurate het-
erogeneity estimates for many research outcomes in psy-
chology and that the suppression of heterogeneity could
often be 20% or more, we consider it important for meta-
analysts to have insight into the bias in heterogeneity
estimates that should be expected due to unreliability
in a wider range of settings. The effect of unreliability
depends on average effect size, true heterogeneity, mean
reliability across studies, the variability in reliabilities,
and sampling variance within studies. Hence, here we
perform a Monte-Carlo simulation study to explore the
expected bias in heterogeneity estimates due to unrelia-
bility in primary studies. In our simulation, we consider
reliabilities to be known and conforming to the strict
assumptions of CTT to gain a better understanding of
how measurement error biases heterogeneity estimates,
while acknowledging that in meta-analytic practice, het-
erogeneity estimation is further challenged by selective
reporting, sampling error, and estimation of reliabilities,
which is particularly challenging when CTT’s strict as-
sumptions are violated.

METHODS
All code and data for this project are avail-
able at the Open Science Framework (OSF) at
osf.io/tg68 and permanently archived at Zenodo
(doi.org/10.5281/zenodo.8052030). For our simulations
and analyses we used R 4.0.2 (R Core Team, 2020) and
we used the R package ‘metafor’ (Viechtbauer, 2010) to
perform meta-analyses and estimate heterogeneity. For
parallel computing we took advantage of the R package
‘parabar’ (Constantin, 2023) and for data handling
‘data.table’ (Dowle & Srinivasan, 2021) and ‘ggplot2’
(Wickham, 2016).

Choice of effect size type for simulations
We focus on correlations as our effect size type in these
simulations because correcting them for unreliability is
straightforward and because they are the effect size type
most corrected in practice. However, unreliability atten-
uates all types of effect sizes and all can be corrected,
either directly [standardized mean differences; Wiernik
& Dahlke (2020)] or by first transforming them into cor-
relations. Although effect sizes can generally be trans-
formed into each other (e.g., Borenstein, 2009, p. 46),
this should be done with care as it can sometimes af-
fect conclusions (e.g., we found a violation of mono-
tonicity in heterogeneity estimates when converting ef-
fect sizes into correlations in a previous project, Olsson-
Collentine et al., 2020, supplement A).

Perhaps the most common way to meta-analyze cor-
relations is to first transform them into Fisher z cor-

https://osf.io/tg68
https://doi.org/10.5281/zenodo.8052030
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relations (Borenstein, 2009, p. 41 - 43) to normalize
their distribution. The Fisher 𝑧 transformation is the
inverse hyperbolic tangent of the product moment cor-
relation and can be computed as 𝑧 = 0.5×𝑙𝑛( 1+𝑟

1−𝑟 ) and
its variance approximated as 𝑉𝑧 = 1/(𝑛 − 3). There is
controversy in the use of the Fisher z transformation
for meta-analysis (e.g., Schmidt & Hunter, 2015, p. 220
- 223), largely related to whether Pearson’s 𝑟 or Fisher’s
𝑧 leads to less bias in average correlations (Schulze,
2007). However, estimating heterogeneity does not seem
to have been the focus of most of the literature’s discus-
sion of the appropriateness of the Fisher z transforma-
tion (Field, 2005; Hafdahl & Williams, 2009; Schmidt
& Hunter, 2015). Hall & Brannick (2002) do report
heterogeneity estimates but focus on the coverage of
prediction intervals (‘credibility intervals’ in Hunter &
Schmidt terminology) which combine the heterogeneity
estimate and point estimate, and Brannick et al. (2019)
examined results only after corrections for attenuation.
Given both this inconclusive evidence and the common
use of the Fisher 𝑧 transformation in practice, we use it
as one of the effect size types in our simulations.

We also use Pearson’s 𝑟. Pearson’s 𝑟 has the advan-
tage that it creates heterogeneity estimates on the same
scale that are more interpretable than heterogeneity es-
timates on the Fisher z scale. Although Fisher 𝑧 correla-
tions can be back-transformed into Pearson’s 𝑟 for inter-
pretation, its heterogeneity cannot. A workaround is to
compute a prediction interval and convert this interval
onto the product-moment scale (Hedges & Vevea, 1998).
The width of the interval can then be used as an esti-
mate of the heterogeneity. We prefer to compute compa-
rable heterogeneity values for Pearson’s 𝑟 and Fisher’s 𝑧
(see the methods section ‘Parameter values’) and report
the bias in heterogeneity estimates, as we believe this is
more interpretable for applied meta-analysts.

The disadvantage to using Pearson’s 𝑟 when estimat-
ing heterogeneity are that (1) the effect size is bounded
to {-1, 1} and (2) its sampling variance 𝜎2

𝑟 = (1−𝜌2)2

𝑛−1
depends on the true effect size 𝜌. The bounded nature
of the Pearson correlation means that large levels of
heterogeneity create substantial truncation of the dis-
tribution of effect sizes if the average effect size is also
large. That the sampling variance covaries with effect
size leads to a small positive bias in heterogeneity esti-
mates (supplement A). This can be solved by replacing
𝜌 with the average correlation across studies ̄𝑟 (Schmidt
& Hunter, 2015), or using the Fisher 𝑧 transformation.
Fisher 𝑧 correlations have the additional advantage that
they are not bound to {-1, 1}. A disadvantage to us-
ing Fisher 𝑧 correlations, in addition to interpretability
of heterogeneity estimates, is that they require back-
transforming into product-moment correlations before
adding measurement error, followed by another transfor-

mation to Fisher z for meta-analysis. Especially for large
Fisher 𝑧 values (which are common when both average
effect size and heterogeneity are large) this transforma-
tion process may introduce inaccuracies in the estimates.
Given the common use of both effect size types and their
mix of advantages and disadvantages we report results
for both Fisher’s 𝑧 and Pearson’s 𝑟.

Meta-analytic model
We apply two meta-analytic models to ensure that our
results are not model-dependent: the Hedges & Vevea
(1998) random-effects model and the Schmidt & Hunter
(2015) ‘bare-bones’ random-effects model. The Hedges
and Vevea (HV) model uses inverse variance weight com-
puted as 𝑤𝑖 = 1/(𝑉𝑖 +𝑇 2) (e.g., Borenstein et al., 2010)
where 𝑉𝑖 is the sampling variance of study 𝑖 and 𝑇 2

is the estimated between-studies variance. The Hunter
and Schmidt (HS) model weighs studies by sample size
𝑤𝑖 = 𝑁𝑖. The differences between these weights are rela-
tively minor (Borenstein et al., 2010; Schmidt & Hunter,
2015, pp. 423–426). Although the HV model is typi-
cally applied to Fisher 𝑧 transformed correlations (e.g.,
Borenstein, 2009, pp. 41–43), we apply it to both trans-
formed and untransformed correlations to enable a more
direct comparison with the HS model and facilitate in-
terpretation. The HS model typically includes correc-
tions for unreliability or other measurement artifacts.
However, we implement it without corrections (‘bare-
bones,’ Schmidt & Hunter, 2015) because this allows us
to focus on the bias in heterogeneity estimates rather
than the performance of corrections (e.g., see Zhang,
2022 for how well they perform in terms of mean esti-
mates).

Estimating heterogeneity in both the HV and bare-
bones HS model essentially consists of comparing the
observed variance in effect sizes with what would be
expected from sampling error alone and then ascribing
any excess observed variance to heterogeneity (Boren-
stein et al., 2010, Box 1; Schmidt & Hunter, 2015, p.
100). However, the process for doing so differs somewhat
between methods. We apply the Restricted Maximum
Likelihood (REML) estimator of heterogeneity when es-
timating heterogeneity in the Hedges and Vevea (1998)
model, because it is the generally recommended hetero-
geneity estimator (Veroniki et al., 2016; Viechtbauer,
2005). Veroniki et al. (2016) describe the REML esti-
mator in detail. The Hunter and Schmidt (2015) model
estimates heterogeneity as 𝜏2 = 𝜎2

𝑟 −𝜎2
𝑒 where 𝜎2

𝑟 is the
observed variance across correlations and 𝜎2

𝑒 is the av-
erage sampling error variance across studies, computed
as Σ[𝑁𝑖𝜎2

𝑒𝑖]
Σ𝑁𝑖

(Schmidt & Hunter, 2015, p. 100) and 𝜎2
𝑒𝑖 is

the usual sampling variance for the Pearson correlation
but with 𝜌 replaced with the sample size weighted aver-
age correlation ̄𝑟 = Σ𝑛𝑖𝑟𝑖

Σ𝑛𝑖
instead of 𝑟𝑖 as is common. A
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Figure 1: Flowchart summarizing the simulation design. For product-moment correlations, option (1) corresponds
to the Hedges and Vevea (1998) model and option (2) to the Schmidt and Hunter (2015) model (see methods section
‘Meta-analytic model’). 𝜃 = average true effect size (i.e., without sampling or measurement error), 𝜏2 = variance of
true effect sizes, 𝜃𝑖 = study true effect size, 𝛾𝑖 = study effect size with sampling error 𝜎2

𝑖 , 𝑁𝑖 = study sample size,
𝑅𝑖 = study reliability, �̄� = average reliability across studies, 𝛿 = standard deviation of reliabilities across studies, 𝑟𝑖
= observed study effect size with sampling and measurement error, ̄𝑟 = average observed effect size across studies.
This figure was created using the website draw.io.

generalized version of the HS estimator for effect sizes
other than correlations was developed by Viechtbauer
and colleagues (Viechtbauer, 2005; Viechtbauer et al.,
2015).

Simulation study design
Figure 1 provides an overview of the design of this sim-
ulation study. Our design was broadly the same for
product-moment correlations and Fisher’s 𝑧, with some
minor differences we highlight in the text below detail-
ing the procedure.

We generated data for the meta-analyses as follows.
First, we sampled 𝑖 = 1, ...,𝑘 true study effect sizes 𝜃𝑖
from 𝑁𝑡𝑟𝑢𝑛𝑐(𝜃,𝜏2). That is, a normal distribution with
a mean of 𝜃 and a variance of 𝜏2 that we truncated
at {−1,1} to stay within the bounds of the product-
moment correlation. We implemented the effect size

truncation in R using inverse transform sampling (link:
functions.r). For Fisher’s 𝑧 no truncation was applied.
Throughout this text we will refer to three types of
truncation: (1) effect size truncation (truncation of
Pearson’s correlations between {-1, 1}), (2), reliabil-
ity truncation (truncation of reliability between {0,
1}), and (3) heterogeneity truncation (truncation of
heterogeneity estimates to be non-negative).

For each of the 𝑘 sampled true study effect sizes
𝜃𝑖 we then sampled one observed effect size 𝛾𝑖 from a
truncated normal distribution 𝑁𝑡𝑟𝑢𝑛𝑐(𝜃𝑖,𝜎2

𝑖 ), using the
same truncation procedure. The sampling variance 𝜎2

𝑖
for each true effect size 𝜃𝑖 we computed using the stan-
dard formula for Pearson’s 𝑟 𝜎2

𝑖 = (1−𝜃2
𝑖 )2

𝑁𝑖−1 where 𝑁𝑖 is
the total sample size for study 𝑖 = 1, ...,𝑘. For Fisher’s
𝑧 no truncation was applied and we approximated the
sampling variance as 𝜎2

𝑖 = 1
𝑁𝑖−3 . At this point we have
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𝑘 sampled effect sizes 𝛾𝑖 in Pearson’s 𝑟 or Fisher’s 𝑧
without measurement error.

To add measurement error we first sampled a relia-
bility 𝑅𝑖 for each study from a truncated ({0,1}) normal
distribution 𝑁𝑡𝑟𝑢𝑛𝑐(�̄�,𝛿), given some average reliabil-
ity across studies �̄� and standard deviation in reliability
𝛿. We assumed that both the dependent and indepen-
dent variable within a study were measured with the
same reliability such that 𝑅𝑖 = 𝑅𝑖𝑋𝑋′ = 𝑅𝑖𝑌 𝑌 ′ . We then
computed observed effect sizes 𝑟𝑖 for each study given
the attenuation formula 𝑟𝑖 = 𝛾𝑖 ×√𝑅𝑋𝑋′ ×√𝑅𝑌 𝑌 ′ . Be-
cause we assumed equal reliability in 𝑋 and 𝑌 this
simplifies to 𝑟𝑖 = 𝛾𝑖 × 𝑅𝑖. Fisher’s 𝑧 we transformed
to product-moment correlations before adding measure-
ment error and then back-transformed into Fisher’s 𝑧
before the next step. At this point we have 𝑘 effect
sizes 𝑟𝑖 in Pearson’s 𝑟 or Fisher’s 𝑧 with sampling er-
ror and measurement error. We then applied either the
HV meta-analytic model or the HS model, as described
in the section ‘the meta-analytic model’. The procedure
described in the current section was replicated 10,000
times for each combination of parameter values.

Parameter values
We ran our analyses across a range of within-study sam-
ple sizes N and number of studies K. Within meta-
analyses we used a fixed sample size across all stud-
ies such that N=N_i. We made this choice rather than
treating sample size as a random variable (Brannick et
al., 2019; as done by e.g., Field, 2005) to be able to ob-
serve the effect of changes in sample size on estimates,
and because we are focused on the average heterogeneity
estimates rather than its sampling variance. We base our
range of sample sizes on empirical estimates of typical
sample size in correlational research in psychology. Fra-
ley et al. (2022) report median sample sizes for between-
person studies in nine psychology journals between 2011
- 2018 which ranged between 69 - 496 depending on jour-
nal and year. Sassenberg & Ditrich (2019) find a median
sample size of 110 (interquartile range, 71 - 195) across
four journals and years (2009, 2011, 2016, and 2018)
in social psychology, and Bakker et al. (preliminary re-
sults; https://osf.io/zsjf4) find median sample sizes be-
tween 24 - 184 for six journals in psychology for the
years 1995, 2006, 2019. Given these empirical findings,
we consider the following sample size values {50, 100,
150, 200}.

When focusing on the bias of heterogeneity estimate,
the number of meta-analyzed studies, K, would not mat-
ter for an unbiased estimator. However, both the het-
erogeneity estimator we used, restricted maximum likeli-
hood, and most other heterogeneity estimators are trun-
cated at zero (Viechtbauer, 2005). Lower values for K
then result in a larger proportion of truncated variance

estimates below zero because of increased sampling vari-
ance in 𝜏2. As such, values of K can affect bias, espe-
cially at lower levels of heterogeneity. We consider the
following values of K: {5, 20, 40, 200}.

We vary the grand mean 𝜃 from 0 to 0.6 in steps
of 0.1 to cover all realistic effect sizes and explore the
boundaries of the interaction between effect size and re-
liability variance. For Fisher’s 𝑧, we transformed these
values to the 𝑧 scale. For context to these values, we con-
sidered the empirical estimates of typical correlational
effect sizes provided by Nuijten et al. (2020) and Schäfer
& Schwarz (2019). Nuijten et al. (2020) performed a
meta-meta-analysis on the fields of intelligence research
and reported a median meta-analytic correlation of 0.24
across 779 predictive validity and correlational studies.
This estimate is likely positively biased due to publi-
cation bias and selective reporting. Schäfer & Schwarz
(2019) reported a median 𝑟 of 0.16 amongst preregis-
tered research in psychology in general, with an ‘upper
median’ (i.e., the 83.35% quantile) of 0.41. This esti-
mate is likely less affected by positive bias but should
not be expected to be unbiased as there appears to be
some positive bias also in preregistered research on av-
erage Scheel et al. (2021).

We defined the between-studies standard deviation
(𝜏) to cover a wide range of variability in true effect
sizes and empirical estimates reported in the psycholog-
ical literature. Van Erp et al. (2017) provided empirical
heterogeneity estimates from 747 meta-analyses in 61
articles published in the journal Psychological Bulletin
between 1990 - 2013. The median (uncorrected) Pear-
son’s 𝑟 𝜏 value in these data was 0.17 (interquartile
range 0.1 - 0.24). The point of our study is that em-
pirical heterogeneity estimates may not be accurately
estimated. Nonetheless, we selected approximately the
interquartile range of 𝜏 -values reported in Van Erp et
al. (2017) for the product-moment correlation, both to
make sure we covered the empirically reported range of
values and because we considered them to represent rea-
sonable variability on the product-moment correlation
scale. The values we selected were {0, 0.1, 0.15, 0.2}.
We selected the largest heterogeneity level to avoid ex-
cessive effect size truncation for our maximum average
effect size of 0.6: 𝜃𝑖 ∼ 𝑁(𝜃 = 0.6,𝜏 = 0.2) implies approx-
imately 95% of effect sizes will be below 1. Our values
are similar to those used by Brannick et al. (2019) in
their simulation study on the performance of different
heterogeneity estimators after corrections for unreliabil-
ity (they used 𝜏 = 0, 0.08, 0.13, 0.2).

Fisher’s 𝑧 is measured at a different scale and it is
not possible to directly convert 𝜏 -values expressed in
Pearson’s 𝑟 into corresponding 𝜏 -values on the Fisher’s
𝑧 scale. To compare results between Fisher’s 𝑧 and the
product-moment correlation we defined heterogeneity
on the 𝐼2 scale. The 𝐼2 index is a relative measure
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of heterogeneity describing the percentage of total vari-
ance that is due to heterogeneity (Higgins, 2003; Higgins
& Thompson, 2002), and as such is measured from 0 -
100%. The 𝐼2 index can be defined as 𝐼2 = 𝜏2

𝑠2+𝜏2 where
𝑠2 = Σ𝑤𝑖(𝑘−1)

(Σ𝑤𝑖)2−Σ𝑤2
𝑖

and 𝑤𝑖 is the precision 𝑤𝑖 = 1/𝜎2. This
means that the 𝐼2 value generally depends on both the
number of studies 𝐾 and the sample size 𝑁𝑖 in these
studies (Borenstein et al., 2017). However, because we
keep 𝑁𝑖 fixed across studies, the value of 𝐼2 depends
only on 𝑁 = 𝑁𝑖 and the heterogeneity.

We thus computed the 𝐼2 index for each sample
size condition and 𝜏 -values defined in Pearson’s 𝑟, and
then computed corresponding 𝜏 -values on the Fisher’s 𝑧
scale given these 𝐼2-values and sample sizes. Two com-
plications were that the value for 𝜎2 varies with effect
size for Pearson’s 𝑟 and that effect size varies across
studies because of 𝜏 . We resolved this by setting 𝜃 = 0
and computing the expected 𝜎2 given 𝜏 and sample size
and then using this expected value to compute 𝐼2. We
used the ‘law of the unconscious statistician’ to com-
pute the expected value of 𝜎2, which says that the ex-
pected value of a function 𝑔(𝑋) of a random variable
can be expressed in terms of the probability distribu-
tion of X: 𝐸[𝑔(𝑋)] = ∫∞

−∞ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥. In our case, 𝑔(𝑥)
corresponds to the sampling variance of the product-
moment correlation, 𝑓(𝑥) ∼ 𝑁(𝜃,𝜏2) and because the
product-moment correlation is bounded at {-1, 1} we
set ∞ instead to 0.999. The resulting 𝜏 values for Fisher
𝑧 were only minimally different from {0, 0.1, 0.15, 0.2}.
For example, for 𝑁 = 50 the corresponding Fisher 𝑧 𝜏 -
values were {0, 0.1031263, 0.1566007, 0.2123514} and
as 𝑁 increased heterogeneity values were more similar
(see supplement B).

Finally, we defined average reliability levels and their
standard deviation based on empirical estimates from
the literature. Flake et al. (2017) documented 245 esti-
mates of Cronbach’s Alpha in psychology and found an
average of 0.79 and a standard deviation of 0.13. The
interquartile range was approximately 0.68 – 0.87 for
studies using (ad hoc) scales that lacked a reference to
an earlier source and 0.79 – 0.88 for scales that did have
a reference. Sánchez-Meca et al. (2012) reported the re-
liability estimates based on five so-called reliability gen-
eralization studies. These five studies summarized reli-
ability in 25 – 51 primary studies (184 total), and the
mean reliability ranged from 0.767 to 0.891 with stan-
dard deviations ranging between 0.034 – 0.133. Given
some likely positive bias in such empirical values caused
by selective reporting (Hussey et al., 2023), we examined
the following mean reliabilities {0.6, 0.7, 0.8, 0.9}, and
standard deviations {0, 0.05, 0.1, 0.15}.

RESULTS
Overall, the net bias in heterogeneity estimates due to
imperfect reliability in primary studies was negative. We
found that the inflation of heterogeneity due to vari-
ance in reliability across studies was less than the sup-
pression due to average unreliability across all levels
of heterogeneity in our primary analysis. For clarity of
communication, we report here only the condition with
maximum variance in reliability (SD = 0.15), as lower
levels of variance will generate inflation between that
observed for zero average effect size (i.e., zero inflation)
and that generated under the maximum reliability vari-
ance. Consequently, analyses with smaller variances in
reliabilities across primary studies entail more severe
underestimates of heterogeneity for larger effect sizes
than those presented here (supplement C). In addition,
although a smaller number of studies in a meta-analysis
(k) leads to a larger positive bias in the absence of het-
erogeneity, as would be expected, there was no practical
difference in the bias once true heterogeneity exceeded
𝜏 = 0.1 (Supplement C). Hence, we primarily report re-
sults for k = 20 in the main text, and only report results
using other values for k (5, 40, 200) when considering
heterogeneity below 𝜏 = 0.1. Finally, for the sake of suc-
cinctness we similarly report only results for N = 150
in the main text, except when we discuss the effects of
sample size on heterogeneity estimates (Figure 4).

Figure 2 shows the net bias in heterogeneity esti-
mates for different levels of heterogeneity (measured in
𝜏) and meta-analytic models. Each column of Figure 2
corresponds to one nominal level of actual heterogene-
ity (𝜏 𝜖 {0, 0.1, 0.15, 0.2}) and each row to a different
analysis (HV with Fisher z, HV with Pearson’s 𝑟, and
HS). The black solid lines indicate actual heterogeneity,
which may differ from nominal heterogeneity because
of effect size truncation or, in the case of Fisher z, be-
cause the comparable heterogeneity levels were slightly
different (as discussed in the method section). The dif-
ferent dashed lines in Figure 2 show the 𝜏 ̂ estimates for
four different levels of average reliability across primary
studies, and the x-axis shows the average (superpopula-
tion) effect size. As can be seen, the bias is marginally
worse for Fisher z than the other two methods (although
Fisher z is on a different scale), but the results are ap-
proximately the same for all three methods. As such, in
the remainder of the results, we will focus on Pearson’s
𝑟 (row two).

As expected, for zero heterogeneity (leftmost column
Figure 2) we see an overestimate of heterogeneity that
increases with average effect size. Generally, there are
two sources that explain the positive bias in the absence
of true heterogeneity, although the use of Pearson’s 𝑟 as
the type of effect size additionally inflates heterogene-
ity estimates to a small degree for the HV model (row
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Figure 2: Unreliability in primary studies leads to a net negative bias when heterogeneity is positive. The x-axis
indicates average effect size and the y-axis estimated heterogeneity in standard deviations averaged across 10,000
replications. Columns indicate the nominal true heterogeneity standard deviation $ au$. Due to truncation in
Pearson’s r or translation to Fisher’s z these values may differ from actual true heterogeneity standard deviation
(black solid lines). Each dashed line corresponds to an average reliability in primary studies. Results are for standard
deviation in reliability = 0.15, within-study sample size = 150, and 20 studies within each meta-analysis. Code to
reproduce figure: osf.io/8ygwj.

2, Figure 2) due to the dependence between effect size
and sampling variance (supplement A). First, and the
only of these two upwardly biasing sources that applies
when 𝜇 = 0, the heterogeneity estimate is inflated due
to the truncation of negative heterogeneity estimates
(Viechtbauer, 2005). Second, there is inflation due to the
variance in reliability across studies in the fixed effect
scenario. For example, for 𝜇 = 0.2 (the closest value to
the median correlation reported by Schäfer & Schwarz,
2019) and �̄� = 0.8 the bias for Pearson’s 𝑟 compared to
true zero heterogeneity is 0.014. For 𝜇 = 0.4 (the upper
median reported by Schäfer & Schwarz) and �̄� = 0.8 the
bias is 0.032. For the highest average reliability (0.9) the
slope is less inclined. This is because the standard devia-
tion for this reliability level is severely truncated due to

the reliability being bounded at 1. The upward force on
estimations of heterogeneity with larger effect size can
also be seen in the presence of heterogeneity (all other
columns). However, this upward force is superseded by
the suppression of heterogeneity that unreliability cre-
ates.

For all true heterogeneity levels in Figure 2 above
zero, we see an overall underestimate of heterogeneity
due to unreliability in the primary studies. This negative
bias can be relatively severe, is worse with smaller effect
sizes and with lower average reliability, and worsens in
an absolute sense as true heterogeneity increases. For
example, for �̄� = 0.8, 𝜇 = 0.2, 𝜏 = 0.1, the bias is -0.03
(30%) for Pearson’s 𝑟, for �̄� = 0.8, 𝜇 = 0.2, 𝜏 = 0.15 the
bias is -0.037 (25%), and for �̄� = 0.8, 𝜇 = 0.2, 𝜏 = 0.2
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Figure 3: Unreliability in primary studies typically leads to a net negative bias even for small degrees of heterogene-
ity. Effect size is Pearson’s r and rows indicate the number of studies in the meta-analysis. The x-axis indicates
average effect size and the y-axis estimated heterogeneity in standard deviations averaged across 10,000 replica-
tions. Columns indicate the nominal true heterogeneity standard deviation $ au$. Due to effect size truncation
in Pearson’s r these values may differ from actual true heterogeneity standard deviation (black solid lines). Each
dashed line corresponds to an average reliability in primary studies. Results are for standard deviation in reliability
= 0.15, within-study sample size = 150. Code to reproduce figure: osf.io/8ygwj.

the bias is -0.046 (23%). For an effect size of 𝜇 = 0.2,
true heterogeneity between 0.1 - 0.2 is underestimated
by between 16% (𝜏 = 0.2, �̄� = 0.9) and 60% (𝜏 = 0.1,
�̄� = 0.6). In other words, the underestimation of true
heterogeneity due to unreliability can be quite severe.

To explore further under what conditions the forces
of inflation and suppression of heterogeneity reach an
equilibrium, we added an analysis for several conditions
with 𝜏 < 0.1. We used the following values {0.02, 0.04,
0.06, 0.08}. Figure 3 presents the results of this analysis
for Pearson’s 𝑟. Because these lower heterogeneity levels
can be expected to be affected by heterogeneity trunca-
tion to a larger extent (which results in inflation), we
present results for four different numbers of studies in
the meta-analysis (rows Figure 3, lower k is associated

with larger inflation of estimates). The standard devi-
ation in reliabilities is again 0.15. Figure 3 shows that
even when only little heterogeneity is present, it will
generally be underestimated. If 𝜇 < 0.3 then imperfect
reliability leads to a negative bias in heterogeneity esti-
mates for all 𝜏 < 0.06 in Pearson’s 𝑟. Even for the lower
levels of true heterogeneity, estimates of heterogeneity
will generally be positively biased only when average ef-
fect size is large, or the number of meta-analyzed studies
is small.

Finally, smaller sample sizes in primary studies tend
to exacerbate the bias in observed heterogeneity esti-
mates due to unreliability. In Figure 4, rows are the
(fixed) sample size within primary studies when k =
20 and standard deviation in reliabilities is 0.15. When
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Figure 4: A smaller sample size in primary studies tends to exacerbate the bias in observed heterogeneity estimates
due to unreliability. The x-axis indicates average effect size and the y-axis estimated heterogeneity in standard
deviations averaged across 10,000 replications. Rows indicate the (fixed) sample size within studies and columns
indicate nominal true between-studies standard deviation. Due to effect size truncation in Pearson’s 𝑟 these values
may differ from actual true heterogeneity standard deviation (black solid lines). Each dashed line corresponds to an
average reliability in primary studies. Results are for standard deviation in reliability = 0.15 and 20 studies within
each meta-analysis. Code to reproduce figure: osf.io/8ygwj.

true heterogeneity is zero (leftmost column Figure 4), a
smaller sample size tends to lead to more positive bias
in estimated heterogeneity. When true heterogeneity is
non-zero, smaller sample size corresponds with larger
negative bias in heterogeneity estimates. For higher lev-
els of reliability, differences due to sample size are small,
but differences can be more concerning when average
reliability is low. For example, consider N = 50 in our
simulation compared with N = 200 (top versus bottom
row Figure 4) when true heterogeneity lies between 0.1
– 0.2 and the average effect size is � = 0.2. If average
reliability is �̄� = 0.8, the lower sample size then leads
to at most ̂𝜏 = 0.01 additional bias in heterogeneity
estimates in our simulations. However, when �̄� = 0.6,
the additional bias can be as much as ̂𝜏 = 0.03 for an

average sample size of 50 compared to 200, making up
approximately one third of the total bias (-0.097) in this
condition (N = 50, 𝜏 = 0.15). Generally, for an effect
size of � = 0.2, true heterogeneity between 0.1 – 0.2 is
underestimated by between 16% (𝜏 = 0.2, �̄� = 0.9) and
73% (𝜏 = 0.1, �̄� = 0.6) in our simulations when sample
size is 50, as compared to the 16-59% we observed when
sample size was 150.

DISCUSSION
We used Monte-Carlo simulations to study the total bias
in meta-analytic heterogeneity estimates due to mea-
surement unreliability in primary studies. Our results
indicate that under most circumstances, uncorrected un-
reliability in primary studies leads to a severe underes-
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timate of heterogeneity in meta-analyses. We observed
a positive bias in heterogeneity estimates due to unreli-
ability only under specific and arguably uncommon cir-
cumstances of (1) actual zero heterogeneity, particularly
when mean effect sizes are large, or (2) combinations of
very small true heterogeneity, large variance in primary
study reliabilities, large mean effect sizes, and a limited
number of primary studies. As expected, heterogeneity
estimates generally improved with higher average re-
liability, and deteriorated with smaller average study
sample size. Our results were approximately the same
whether one used a classic random-effects meta-analytic
model (Hedges & Vevea, 1998) or a ‘bare-bones’ psycho-
metric meta-analytic model (Schmidt & Hunter, 2015),
and whether one used Pearson’s 𝑟 as the effect size or
Fisher’s 𝑧, although the negative bias was slightly larger
with Fisher’s 𝑧. The severity of the underestimation of
heterogeneity could lead to meta-analyses in psychology
missing relevant moderators and overgeneralizing out-
comes. Unreliability appears to bring truly different ef-
fects closer together, thereby obscuring true differences
between studies that could be relevant for theory, prac-
tice, and future research efforts.

In meta-analyses, low reliabilities not only lower the
average effect size estimate, but also artificially suppress
heterogeneity estimates in most cases. For a typical ef-
fect size around r = 0.2 and substantial true heterogene-
ity (𝜏 > 0.1) that is not uncommon in the meta-analytic
literature (Van Erp et al., 2017), we found expected het-
erogeneity to be underestimated by about 15% - 60%
in our simulations primarily depending on average re-
liability in primary studies (higher reliability leads to
a smaller underestimate), although the underestimate
could be as high as 73% with low sample sizes. As true
heterogeneity increases, the proportional underestimate
decreases to some degree, but the underestimate in abso-
lute terms will worsen. Variability in reliabilities across
primary studies is a counter-acting force that inflates
heterogeneity estimates as average effect size increases.
Consequently, the underestimate of heterogeneity can
become less severe as effect size increases, although the
overall bias is likely to remain negative. Small degrees
of true heterogeneity (𝜏 < .08) can be overestimated un-
der certain conditions, but this would typically require a
combination of a small number of studies, large variance
in study reliabilities, and a large average effect size. The
severity and generality of the underestimate in hetero-
geneity due to unreliability means that meta-analysts
should not ignore the effect of reliability on their hetero-
geneity estimates and that research is needed to provide
practical guidance to meta-analysts.

Without any information on primary studies’
reliabilities, it would often be impossible to know
whether a small observed heterogeneity is due to over-
estimated true zero heterogeneity or underestimated

small heterogeneity. Moreover, it is certainly possible
to observe a zero heterogeneity estimate under larger
true heterogeneity levels, because the sampling vari-
ability in heterogeneity estimates is often substantial
in practice (Ioannidis et al., 2007; Olsson-Collentine
et al., 2020). Generally, distinguishing between zero
and small heterogeneity in empirical meta-analyses is
statistically challenging considering the typical sample
sizes and numbers of studies in meta-analyses in
psychology (Olsson-Collentine et al., 2020). The power
to detect small true heterogeneity in most psychological
meta-analyses is low. In our view, the distinction be-
tween zero and small heterogeneity in meta-analysis is
primarily a hypothetical one as true zero heterogeneity
is not expected in meta-analytic practice to begin with
(see also Hedges, 1987), except perhaps in specific sets
of very similar direct replications (Olsson-Collentine et
al., 2020).

We found that using Pearson’s 𝑟 or Fisher’s 𝑧 as
our effect size resulted in very similar degrees of bias
in heterogeneity estimates due to uncorrected unrelia-
bility in primary studies. The underestimate is slightly
worse for Fisher’s 𝑧 than for Pearson’s 𝑟. The usage
of Pearson’s 𝑟 inflates heterogeneity estimates slightly
(due to its bounded nature and effect size dependent
sampling variance), which is apparently beneficial for
heterogeneity estimates when not correcting for unrelia-
bility. However, the additional negative bias when using
Fisher’s 𝑧 is small and we consider the difference negli-
gible in the light of the severe underestimates generated
by unreliability.

Should meta-analysts correct for
unreliability in primary studies?
Our simulations show that heterogeneity estimates are
biased when unreliability is ignored, so in principle one
should correct for unreliability. However, even done per-
fectly this would not mean that heterogeneity estimates
end up to be accurate, because few meta-analyses are
able to include sufficient studies (Davey et al., 2011;
Van Erp et al., 2017) to measure heterogeneity without
large uncertainty and wide confidence intervals (Ioanni-
dis et al., 2007; Olsson-Collentine et al., 2020). In prac-
tice, attempting to correct for unreliability comes with
many caveats and assumptions that must be considered.
We first consider challenges with correcting for unre-
liability in the CTT framework presuming that CTT
assumptions hold. Next, we consider potential concerns
with the CTT assumptions and whether structural equa-
tion modeling (SEM) is a viable alternative in the meta-
analytic context.

There are several concerns with correcting for unre-
liability in the CTT framework even when its assump-
tions hold. First, reliability estimates are lower bound
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estimates, meaning that systematically correcting for
unreliability can be expected to lead to overestimated
mean effect sizes and subsequent overestimated hetero-
geneity. Unfortunately, the most popular reliability es-
timate (Cronbach’s Alpha, Flake et al., 2017; Hogan
et al., 2000) is known to underestimate the lower bound
even further than several alternatives, particularly when
the strong assumptions underlying CTT are not met (Si-
jtsma, 2008). Second, CTT corrections of correlations as
commonly applied (Schmidt & Hunter, 2015; Charles,
2005; but see Raju et al., 1991) do not consider that
reliability estimates themselves are subject to substan-
tial sampling error (Fan & Thompson, 2001) that add
additional uncertainty to corrected effect sizes and sub-
sequent estimates of heterogeneity. Third, there are sev-
eral types of reliability estimates (e.g., “internal consis-
tency”, test-retest, coefficient of equivalence) that do
not necessarily derive from the same type of measure-
ment error and may result in different reliability es-
timates (Dimitrov, 2002; Revelle & Condon, 2019). If
the reliability estimate applied does not account for all
relevant sources of measurement error, it will overesti-
mate reliability and heterogeneity will remain underes-
timated despite unreliability corrections. Fourth, relia-
bility estimates are sometimes not reported in primary
studies (Flake et al., 2017). For meta-analysis, missing
estimates are then often imputed based on average ob-
served reliability or based on some ‘typical’ reliability
(Gnambs & Sengewald, 2023; Schmidt & Hunter, 2015).
However, what a ‘typical’ reliability should be is open
to debate (LeBreton et al., 2014), and mean imputation
leads to a biased pooled estimate, especially so if missing
statistics are related to the value of the statistic (and it
seems likely that non-reporting is more common when
reliability is low). Mean imputation is seen by experts in
missing data as “possibly the worst missing data han-
dling method available” (Enders, 2010, p. 43; Schafer
& Graham, 2002, p. 159; see also Van Buuren, 2018, p.
12).

Correcting for unreliability in the CTT framework
comes with several assumptions that may be hard to mo-
tivate in practice. First, most estimates of reliability in
CTT assume unidimensionality (e.g., Borsboom & Mel-
lenbergh, 2002; Savalei & Reise, 2019), and violations of
this assumption can severely bias reliability estimates
(Savalei & Reise, 2019). Second, correcting for unrelia-
bility in the CTT framework assumes linear associations
between scale and latent construct, which implies that
corrections may result in biased estimates when ordinal
scales (such as Likert-scales) are short (Zhang, 2022).
Based on their simulations, Zhang (2022) recommends
that ordinal scales should have at least 12 items (with
≥ 5 answer categories per item) to use Cronbach’s Al-
pha to correct for unreliability in meta-analysis. Prob-
lematically, Flake et al. (2017) report that the average

scale length in psychology (excluding 1-item scales) is
4.69 items (SD = 6.35). Third, true scores 𝑋 and 𝑌
are assumed to be normally distributed. Zhang (2022)
demonstrated in simulation studies that when this as-
sumption does not hold average effect size estimates
will be inaccurate, especially when the average effect
size is large (although they did not examine hetero-
geneity). Fourth, estimators such as Cronbach’s Alpha
assume uncorrelated errors (e.g., Dimitrov, 2002; Teo
& Fan, 2013) and essential tau-equivalence (i.e., items
have equal factor loadings on a latent construct, e.g.,
Revelle & Condon, 2019). Correlation of errors can lead
to a substantial overestimate of reliability (e.g., Dim-
itrov, 2002; Teo & Fan, 2013), and may occur in many
measurement situations, such as when items on a scale
refer to the same stimuli (e.g., multiple reading compre-
hension items referring to the same paragraph, Green &
Yang, 2009). Overestimation of reliability would leave
heterogeneity estimates with a negative bias remaining
even after CTT correction. The assumption of essen-
tial tau-equivalence is empirically unrealistic, and viola-
tions lead to an underestimate of the reliability statistic
(Sijtsma, 2008, p. 111). This bias may often be small
enough to be neglected (Green & Yang, 2009; Savalei &
Reise, 2019), but can interact with the assumption of
normal distributed true scores and result in inaccurate
estimates of average effect sizes even for ordinal scales
with more than 12 items (Zhang, 2022). Extending the
study of Zhang (2022) also to examine the effects on het-
erogeneity estimates would be a useful avenue of future
research.

When all of the CTT assumptions hold, and if practi-
cal concerns can be overcome, CTT corrections of unre-
liability appear to function well in meta-analysis of cor-
relations (Brannick et al., 2019; e.g., Hall & Brannick,
2002; Schmidt & Hunter, 2015). However, research ap-
pears to be lacking on the consequences of CTT correc-
tions for meta-analysis when assumptions do not hold
(but see Zhang, 2022). Moreover, because latent con-
structs are defined by latent variable models (Borsboom
& Mellenbergh, 2002), the strong assumptions of CTT
regarding latent associations, factor loadings, uncorre-
lated errors, and the distribution of true scores may be
unpalatable to many researchers. Modern latent mod-
els based on Structural Equation Modelling (SEM, e.g.,
Lei & Wu, 2007) may then be an option, as they permit
delving into measurements and latent construct struc-
tures rather than relying on assumptions.

Meta-analysis can be conceptualized as a SEM
model (e.g., Cheung, 2015), which holds promise that
the benefits of modern psychometric theory might be
applied also to latent constructs summarized across
multiple studies. In Meta-Analytic Structural Equation
Modeling (MASEM, e.g., Cheung & Chan, 2005) un-
reliability in primary studies can be corrected in three
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ways (Gnambs & Sengewald, 2023): (1) by estimating
a SEM model in each primary study and then pooling
estimates (parameter-based MASEM, Cheung, 2015,
p. 241), (2) by directly modeling latent variables in
the MASEM, or (3) by first correcting correlations
before introducing them into the MASEM framework
(i.e., fundamentally identical to the CTT approach).
The first option is limited because it is rarely the case
that the same SEM model can be fit across multiple
independent datasets, except in highly structured cases
(e.g., Brunner et al., 2022). The second option is the
preferable option, but requires item-level statistics
rather than summary values, which are rarely available
to meta-analysts. The third option, naturally, suffers
the same challenges and assumptions as corrections
under classical test theory. As such, the potential to use
MASEM to take advantage of modern psychometric
theory when correcting for unreliability is challenging
in practice. That said, multi-lab replication projects
are increasingly common in psychology (e.g., Klein et
al., 2014; McCarthy et al., 2021) and consist of a set
of direct replication studies where analysts have access
to all data. As such, they are well-placed to take full
advantage of MASEM for their analyses.

In the end, meta-analysis depends on the quality
of the primary studies that make up its data. As long
as researchers in psychology underappreciate the impor-
tance of measurement, meta-analytic estimates will be
poor. Meta-analysts that consider the challenges and
assumptions of CTT corrections of unreliability accept-
able should acknowledge the many caveats inherent in
doing so and report average effect size and heterogene-
ity estimates based on both corrected and uncorrected
estimates. Meta-analysts who consider CTT corrections
untenable need to consider that heterogeneity estimates
may be severely underestimated. In either case, meta-
analysts should get used to extracting reliability infor-
mation whenever available from primary studies.

Limitations
Arguably the biggest challenge in estimating heterogene-
ity in meta- practice is the large degree of sampling vari-
ance in heterogeneity estimates that can be expected in
almost any meta-analysis (Ioannidis et al., 2007; Olsson-
Collentine et al., 2020). Consider a meta-analysis with-
out measurement error of k =12 studies (the median
number in psychology, Van Erp et al., 2017) with N =
150 in all studies, 𝜏 = 0.17 (the median observed 𝜏 for
correlations in Van Erp et al., 2017), and 𝜇 = 0. Across
10,000 replications the median width of the 95% con-
fidence interval around the heterogeneity estimate (us-
ing default settings in metafor) is then 0.195 in Pear-
son’s 𝑟 units. In our study, we did not examine sam-
pling variance in heterogeneity estimates or their root

mean squared error. This is because although we ap-
ply different meta-analytic models and effect sizes, the
purpose was not to compare the efficiency of these differ-
ent modes of estimation. As the effect of unreliability in
primary studies is simply to change the heterogeneity of
effect sizes, the results of previous studies on the compa-
rable performance of different heterogeneity estimators
applies also here (e.g., Langan et al., 2017; Veroniki et
al., 2016; Viechtbauer, 2005). That said, it would be use-
ful to examine the variance of heterogeneity estimates in
future research when the focus is on developing practical
guidance for meta-analysts. Doing so could be helpful
to gain a better idea of how likely a particular observed
heterogeneity estimate is to belong to different distri-
butions of true heterogeneity in the presence of mea-
surement unreliability. As this would depend on N, K,
mean reliability, variability in reliability, average effect
size, observed heterogeneity, and the true heterogeneity
levels being compared, implementing such an analysis
would probably be best done on a case-by-case basis
(e.g., through a webapp such as developed for sensitiv-
ity analyses of the effect of publication bias on hetero-
geneity by Augusteijn et al., 2019) . Given the challenges
in correcting for unreliability, such a sensitivity analysis
could be a useful tool to reason around the impact of un-
reliability for applied meta-analysts. An additional chal-
lenge when providing practical advice to meta-analysts
is how to handle selective reporting of study reliabili-
ties (Hussey et al., 2023)) in primary studies, and the
problems that 𝑝-hacking and publication bias create in
estimating heterogeneity. We know from Augusteijn et
al. (2019) that publication bias alone creates complex
outcomes, but when meta-analysis is affected by unreli-
ability and 𝑝-hacking true heterogeneity is additionally
obscured.

Our simulations come with some caveats. First, we
assume reliabilities to be known. This is never the case,
and any estimate of reliability is at best a lower bound
estimate subject to sizeable sampling errors. By assum-
ing reliabilities to be known, we were able to show the
bias of observed heterogeneity estimates compared to
the ideal case of no measurement error. However, this
may mislead readers to believe that a simple correction
for unreliability will leave them with an unbiased esti-
mate. As discussed in the section ‘should meta-analysts
correct for unreliability?’ correcting for reliability under
realistic circumstances and using estimated reliability
is not straightforward and whether the resulting esti-
mate will be unbiased is contingent on several factors
that remain to be studied. Examining the effect of cor-
rections based on estimated reliabilities under realistic
conditions in future studies could offer practical guid-
ance to meta-analysts.

Second, our simulations assumed equal reliability for
the measures 𝑋 and 𝑌 (i.e., 𝑅𝑖 = 𝑅𝑥𝑥′ = 𝑅𝑦𝑦′) within



Unreliable heterogeneity: how measurement error obscures heterogeneity in meta-analyses in psychology

a study, which is not realistic. However, as we never
use the reliabilities individually (i.e., only expressed as
√𝑅𝑥𝑥′ × √𝑅𝑦𝑦′) we do not expect major impact on
our results. Consider that if 𝑅𝑖 = 0.7 then √𝑅𝑥𝑥′ ×
√𝑅𝑦𝑦′ = 0.7 whereas if if 𝑅𝑥𝑥′ and 𝑅𝑦𝑦′ took other val-
ues from a distribution centered on 0.7 this value would
be lower (e.g., if 𝑅𝑥𝑥′ = 0.5 and 𝑅𝑦𝑦′ = 0.9 then √𝑅𝑥𝑥′ ×
√𝑅𝑦𝑦′ ≈ 0.67). As we use the results of √𝑅𝑥𝑥′ ×√𝑅𝑦𝑦′

in our simulations to generating observed effect sizes
from true effect sizes (i.e., 𝑟𝑥𝑦 = 𝜌𝑥𝑦 × √𝑅𝑥𝑥′ × √𝑅𝑦𝑦′ ,
where 𝜌𝑥𝑦 is the true effect size after sampling error),
letting the reliability for 𝑋 and 𝑌 vary would lead to
slightly larger attenuation of observed effect sizes on av-
erage. That is, letting the reliability of 𝑋 and 𝑌 vary
within studies would lead to larger negative bias in ob-
served heterogeneity estimates than in our simulations,
indicating that the effect might even be somewhat more
severe than in our results.

Third, we used a fixed sample size (N) across studies
within a meta-analysis in our simulations, which is un-
realistic. We showed that increasing the primary study
sample size led to better heterogeneity estimates, espe-
cially for low reliability. There is large variability in how
simulation studies focused on heterogeneity implement
sample sizes (Langan et al., 2017). Most studies sample
from a uniform distribution of sample sizes, but there
are also studies that have used conditions with fixed
sample sizes like us (Langan et al., 2019). There ap-
pears to be no systematic exploration of the effect of
different distributions of sample sizes on heterogeneity
estimation, and the effect of sample size is generally con-
sidered in view of its average value (e.g., Viechtbauer,
2005). The range of sample sizes in a meta-analysis ap-
pears to affect the performance of heterogeneity estima-
tion (Langan et al., 2017), but we believe this relates
only to the efficiency of heterogeneity estimates rather
than bias, given a sufficiently large number of repeti-
tions in the simulations. That said, implementing a re-
alistic distribution of sample sizes would be important
for research attempting to provide concrete guidance to
meta-researchers on how to interpret observed hetero-
geneity in the presence of measurement error as vari-
ability in estimates then is important. Implementing a
distribution of sample sizes based on relevant empirical
literature (e.g., as done by Brannick et al., 2019) could
be one way to increase realism in simulated sample sizes.

Finally, we only considered bias in heterogeneity due
to unreliability in primary studies, but there exist other
measurement artifacts such as restriction of range, di-
chotomization, and more (Schmidt & Hunter, 2015). Al-
though measurement error is the only measurement ar-
tifact that is always present, many of these other mea-
surement artifacts may impact heterogeneity estimates
when they are present. Based on Schmidt & Hunter

(2015) ’s arguments that measurement artifacts all tend
to attenuate effect sizes in a similar way to unreliabil-
ity (p. 78-79), we expect that their net effect on het-
erogeneity estimates may similarly be a negative bias.
The extent to which this prediction holds true (and
whether these measurement artifacts can be corrected
for in MASEM, Gnambs & Sengewald, 2023) awaits fur-
ther study.

Conclusion
Imperfect measurement reliability in primary studies
generally leads to a severe underestimate of observed
meta-analytic heterogeneity. Unreliability may thereby
obscure true differences between studies that could be
relevant for theory, practice, and future research efforts.
As few meta-analyses in psychology correct for unre-
liability in primary studies, heterogeneity is likely un-
derestimated in a large proportion of meta-analyses in
psychology. Yet, sophisticated methods for correcting
measurement unreliability such as meta-analytic struc-
tural equation modeling (MASEM) are only applicable
in exceptional cases and corrections based on classical
test theory come with caveats and strong assumptions
that are often unrealistic and currently do not fully con-
sider insights from modern test theory. Accurate esti-
mation of meta-analytic heterogeneity is difficult and
will remain so unless measurement concerns (Flake et
al., 2017; Flake & Fried, 2020; Kane et al., 2021) are
taken seriously in primary research. The good news is
that study designs (multi-lab replication studies) which
can apply more sophisticated versions of MASEM are
becoming increasingly common in psychology, allowing
us to study how to best deal with measurement errors
when estimating variation of true effect sizes in meta-
analyses
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