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The COVID-19 outbreak has led to an exponential increase
of publications and preprints about the virus, its causes,
consequences, and possible cures. COVID-19 research has
been conducted under high time pressure and has been
subject to financial and societal interests. Doing research
under such pressure may influence the scrutiny with which
researchers perform and write up their studies. Either
researchers become more diligent, because of the high-stakes
nature of the research, or the time pressure may lead to
cutting corners and lower quality output. In this study, we
conducted a natural experiment to compare the prevalence of
incorrectly reported statistics in a stratified random sample
of COVID-19 preprints and a matched sample of non-
COVID-19 preprints. Our results show that the overall
prevalence of incorrectly reported statistics is 9–10%, but
frequentist as well as Bayesian hypothesis tests show no
difference in the number of statistical inconsistencies between
COVID-19 and non-COVID-19 preprints. In conclusion, the
literature suggests that COVID-19 research may on average
have more methodological problems than non-COVID-19
research, but our results show that there is no difference in
the statistical reporting quality.
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1. Introduction
The COVID-19 pandemic has led to an exponential increase of publications and preprints (i.e. scientific
manuscripts published in open registries that have yet to undergo peer review) concerning COVID-19
[1,2]. Not only is the volume of output almost unprecedented, COVID-19-related articles are also
published much faster than their non-COVID-19 counterparts [3]. It is encouraging to see the speed
with which the scientific community has responded to this pandemic, but this ‘high-speed’ science
may not be without risks. A substantial number of scientists have voiced their concern that the
pressure to disseminate findings quickly may decrease scrutiny in performing, reporting and
reviewing COVID-19 studies [3–8].

Several empirical studies underline the possible risks of publishing science under pressure. For
example, past bibliometric analyses showed low international collaboration in research on natural
disasters (including the severe acute respiratory syndrome coronavirus SARS-CoV outbreak in 2003;
[9–11]). Furthermore, analyses of the current COVID-19 literature showed poor methodology and
reporting in both preprints and peer-reviewed publications (e.g. small samples, lack of control groups,
no mention of a sampling frame or study limitations; [12–15]). In a more direct comparison, a recent
preprint reported lower methodological rigour in 539 published COVID-19 papers compared with
papers published in the previous year in the same journal as the control group [16]. Specifically, Jung
et al. [16] measured methodological rigour using standard quality checklists such as the Cochrane risk
of bias tool [17] and the Newcastle–Ottawa scale [18]. They showed that only 41% of the COVID-19
articles could be considered of high methodological quality, as compared with over 73% of the articles
in the control group.

To our knowledge, one important aspect of research quality of COVID-19 studies has not been looked
at yet: the quality of statistical reporting. Statistics underlie many conclusions presented in COVID-19
studies, so it is of paramount importance that these statistics are correctly reported. Inconsistent
statistics affect the robustness of a conclusion: if a reported statistic is not in line with other
information in the paper, the trust in the claim will be lowered. Imagine, for example, that researchers
study the impact of a treatment on the mortality of patients infected with the virus. The researchers
report an odds ratio, but the odds ratio is not in line with the number of patients in the experimental
and control group that die. Such an inconsistency will lower the trust in the finding and
corresponding substantive conclusions and policy.

Previous research has shown a high prevalence of statistical reporting inconsistencies in publications
from different fields [19–23]. Based on the observed suboptimal methodological and reporting quality of
COVID-19 studies, and given the increased time pressure and strong financial and societal interests
under which this research is conducted, it is imaginable that the prevalence of statistical reporting
inconsistencies in COVID-19 papers is even higher than in non-COVID-19 papers. However, the
contrary could also be true: the severity of the pandemic, the perceived importance of COVID-19
research and the expected attention to this research may cause researchers to take more care in
reporting the statistical results than they would normally do. To study this, we compared the
prevalence of statistical reporting inconsistencies in COVID-19 preprints and matched controls.
Specifically, we tested the following hypothesis:
1.1. Hypothesis: the prevalence of statistical reporting inconsistencies differs between COVID-19
and matched non-COVID-19 preprints

We specifically focused on preprints for two main reasons. First, preprints have played a central role in
early dissemination of scientific insights in the COVID-19 pandemic [2]. Second, preprints are easy to
access because they are not behind paywalls and the majority of preprints are published at dedicated
preprint servers, which means that they can easily be located and accessed.
2. Methods
We studied the prevalence of statistical reporting inconsistencies in COVID-19 as compared with
non-COVID-19 preprints. This makes our study a natural experiment, because we are comparing
two existing groups that occurred naturally and cannot be controlled. A summary of the design
can be found in table 1. All data and code for this project are available on the Open Science
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Framework (OSF) on https://osf.io/tdfgq/. This paper is a Registered Report. The accepted
Stage 1 manuscript is available at https://doi.org/10.17605/OSF.IO/WCND4. The date of
Stage 1 in principle acceptance was 24 February 2021. This study was approved by the Ethics
Review Board of the Tilburg School of Social and Behavioural Sciences at Tilburg University
(reference: RP330).
publishing.org/journal/rsos
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2.1. Population of preprints under study
The preprint servers medRxiv and bioRxiv collate all submitted preprints about COVID-19 research (see
https://connect.biorxiv.org/relate/content/181). The population of cases that we studied are the
preprints that are published on medRxiv and bioRxiv and classified as COVID-19 research by these
servers. Our sampling frame consists of all COVID-19 preprints that were available from the preprint
servers between 19 January 2020 and 31 January 2021. We selected 19 January 2020 as the starting
date, because this is the date of the oldest COVID-19 preprint on the servers (accessed on 2 February
2021). The sampling frame also contains information about characteristics of the preprints, such as the
number of authors, the subject category, the server a preprint was published on, and the date a
preprint was published. These four characteristics were used to draw a stratified random sample of
1200 COVID-19 preprints to ensure that the characteristics of the population of preprints are
represented as closely as possible in the sample.

The strata used in this sampling procedure were: the preprint server (medRxiv or bioRxiv), subject
category as identified by the preprint servers, month of the year a preprint was published, and a
categorical variable indicating the number of authors of a preprint (categories 1, 2, 3–10, 11–∞). We
included strata for preprint server and subject category as the prevalence of statistical reporting
inconsistencies may differ between research areas. Month of the year was included to take potential
differences into account between preprints published at the start of the pandemic or more than one
year later. The categories for the number of preprint authors were selected to reflect possible
differences in the sense of responsibility authors may feel to double-check the reported statistical
results. It is imaginable that there is a difference between single-authored and multi-authored
preprints, because co-authors may check the statistical results in multi-authored preprints. It is also
imaginable that there is a diffusion of responsibility as the number of authors increases, which is
reflected by the different categories for 2, 3–10 and 11–∞ authors.

We also have a sampling frame of all non-COVID-19 preprints published between 19 January 2020
and 31 January 2021. The same strata as above were used to match each sampled COVID-19 preprint
to a comparable non-COVID-19 preprint. That is, for each COVID-19 preprint we selected a non-
COVID-19 preprint that is published on the same preprint server, in the same subject category, in the
same month of the year, and with the same category of number of authors. The most recent version of
a COVID-19 preprint was always downloaded, and we also included the version number of the
COVID-19 preprint for selecting a matching non-COVID-19 preprint. If multiple non-COVID-19
preprints ended up in the selection, we randomly sampled one of these preprints. We only extracted
statistics from a matching preprint if the corresponding COVID-19 preprint contained statistical results
of which we could check the consistency. In the case that a COVID-19 preprint contained statistical
results but the matching preprint did not, we continued randomly sampling a matching preprint until
we had sampled one that contained statistical results.

In the case that there were no matching non-COVID-19 preprints for a certain COVID-19 preprint, we
relaxed the month in which a preprint was published by also searching for matching preprints in
adjacent months. If there were also no non-COVID-19 preprints published with these characteristics in
adjacent months, we again searched for preprints published in the same month as the COVID-19
preprint but now relaxing the characteristic reflecting the number of authors by assessing whether a
non-COVID-19 preprint is present in adjacent categories. Third, if this did not result in a matching
non-COVID-19 preprint, we searched for preprints in the same category reflecting the number of
authors in the COVID-19 preprint but published on the other preprint server. Finally, in the rare cases
where this did not result in a match, we looked for a non-COVID-19 preprint with the same subject
category and version number, but relaxed all other characteristics. To verify that the matching
procedure worked as planned, we manually checked whether a non-COVID-19 preprint was indeed a
matched case for the first 50 sampled preprints.

Figure 1 provides an overview of the stratified sampling and matching procedure. We programmed
the stratified sampling procedure and all analyses in the statistical software R (v. 4.0.3; [24]). R code for

https://osf.io/tdfgq/
https://doi.org/10.17605/OSF.IO/WCND4
https://connect.biorxiv.org/relate/content/181


step 1:

randomly sample a COVID-19
preprint according to the stratified

random sampling plan

step 2:

step 3:

step 4:

step 5:

search for matching non-COVID-19
preprints on the criteria:

extract statistics from the sampled
COVID-19 preprint

stop and do not extract statistics
from the non-COVID-19 preprint.

continue with step 1.

repeat steps 2 and 4
extract statistics from the sampled

non-COVID-19 preprint

continue with step 1 until 1200
COVID-19 preprints are screened

for statistics

search for a non-COVID-19 preprints
published...

relax one matching criterion in the
following order and stop if a matching
non-COVID-19 preprint has been
selected:

–  preprint server

if a match has
been found

if no match has
been found

if there are no
statistics to
be extracted

if there are no
statistics to
be extracted

if there are statistics
that could be extracted

–  subject category
–  publication month

–  version number

–  category of number of
   authors

–  in adjacent months
–  in adjacent categories for the
   number of authors

–  with only the same subject
   category and version number

–  on the other preprint server

Figure 1. Overview of the stratified sampling and matching procedure.
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the stratified sampling procedure and matching procedure is available at https://osf.io/bmkew/ and
https://osf.io/6rhu9/.
2.2. Data extraction
The dependent variable in our study is the internal consistency of a reported statistic. A statistical
reporting inconsistency arises when numbers belonging to a set do not match. For example, when a
paper states ‘7% of the patients died in the hospital (5/100)’, it is clear that these numbers are not

https://osf.io/bmkew/
https://osf.io/6rhu9/
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internally consistent: 5/100 is 5%, not 7%. In our study, we manually extracted1 and subsequently
assessed the internal consistency of the following types of statistics:

— Reported percentages should match the accompanying fraction (e.g. 5% versus 5/100).
— Reported test sensitivity/specificity/accuracy/positive predictive value/negative predictive value

should match reported true positive/true negative/false positive/false negative rates.
— Reported total sample size should match reported subgroup sizes.
— Reported marginal values in frequency tables should match cell values.
— Reported p-values should match reported test statistics and degrees of freedom.
— Reported odds ratios/risk ratios/risk differences should match values reported in the associated

frequency table.

We extracted reported statistics regardless of whether these came from a primary or secondary analysis.
However, we did not extract reported statistics if the preprint contained insufficient information to assess
the internal consistency. We also did not extract other types of statistics than the ones mentioned above
(e.g. effect sizes such as explained variance in an ANOVA or regression analysis and results of Bayesian
analyses), because these types of statistics are usually not reported with enough detail to allow a check
for internal consistency. If more than two tables were reported in a preprint, we randomly selected two
tables to potentially extract statistics from. We did not extract statistics reported in appendices or
electronic supplementary material. See our coding protocol (https://osf.io/n4u5g) for details.

To check and improve inter-rater reliability of the coding procedure, the two research assistants
responsible for statistics extraction both coded the same 50 preprints. We assessed inter-rater reliability
by verifying that both coders have extracted the same statistics from the preprints. Specifically, we did
two things. First, we calculated the correlation between the number of statistics extracted by each
coder (r = 0.987). Second, we calculated the median difference between the number of extracted
statistics of each coder per preprint (median = 2; interquartile range (IQR) = 6). Moreover, a meeting
was organized with the two research assistants and one of the principal investigators to evaluate the
data extraction procedure for these 50 preprints. Differences in extracted statistics by the two research
assistants were discussed in this meeting in order to improve inter-rater reliability even further. In the
end, a total of three research assistants extracted statistics. The additional coder was trained by the
original two. Given the high inter-rater reliability in the first round of coding, we did not do another
round of double-coding preprints to reassess inter-rater reliability.

The extracted data were filled out in a spreadsheet (see https://osf.io/ufcw6 for the template and
https://osf.io/a5xmz/ for the filled out spreadsheets), and we ran two R scripts (https://osf.io/er6bg
and https://osf.io/8kdzt) to automatically recompute the reported statistic from the other reported
information. If the reported and recomputed statistics did not match, the result was marked as
inconsistent. We took rounding into account2 and only compared the statistics after rounding using
the same number of decimals as the reported statistic. If the R script flagged a result as an
inconsistency, we manually verified this in the preprint to decrease the probability that we wrongly
classified statistics as inconsistencies.

In this operationalization of statistical reporting inconsistencies, we did not take into account the size
of the discrepancy, because it is often not possible to determine which of the reported results in the set is/
are incorrect. To illustrate, say that a paper reports the following statistic: ‘t28 = 2.2, p = 0.063’. The
recalculated p-value based on the test statistic and degrees of freedom is 0.036. This could be
considered a relatively large discrepancy: the recalculated p-value is almost twice as small as the
reported p-value, and it falls on the other side of the conventional significance level of 0.05. However,
without the raw data we have no way of knowing which of the three reported results is incorrect. It
could also be the case that the p-value is correctly reported, but there is an error in the test statistic
and the recalculated test statistic is 1.9 instead of 2.2. This discrepancy is much smaller (percentage-
wise) than the discrepancy in the recalculated p-values, even though we looked at the same set of
inconsistent numbers. Therefore, we decided to only record whether a statistic is consistent or
inconsistent, and not try to determine the size of the discrepancy.
1Note the tool statcheck [25] that automatically extracts null hypothesis significance tests and checks the consistency of reported p-values
cannot be used here, because it can only detect statistics reported in APA style [26], which is not used in the majority of preprints
submitted to bioRxiv and medRxiv.
2Different software packages sometimes maintain different rounding rules. Specifically, depending on which software is used for
rounding (or if done manually), a value ending in 5 can be either rounded up or down. To take this into account, we will round
recalculated values ending in 5 in both directions and if either matches the reported value consider it correct.

https://osf.io/n4u5g
https://osf.io/ufcw6
https://osf.io/a5xmz/
https://osf.io/er6bg
https://osf.io/8kdzt
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2.3. Analysis
We tested our hypothesis using a logistic multi-level model, because the dependent variable in our study
is dichotomous (whether a statistical result is inconsistent or not). This model also takes into account any
dependencies between inconsistencies in results within a single preprint. We indicate a statistical result
with i and a preprint with j such that the statistical model to test our hypothesis is

logitðpijÞ ¼ g00 þ g01covidþ m0j,

where πij is the probability of an inconsistency in statistical result i of preprint j, g00 denotes the intercept,
g01 is the parameter of interest testing whether COVID-19 preprints contain more or fewer statistical
inconsistencies than non-COVID-19 preprints (i.e. covid indicates whether the preprint was about
COVID-19 (1) or not (0)), and m0j denotes the random effect that follows a normal distribution with
mean 0 and variance t2. Our primary interest is estimating g01 and testing whether this parameter is
different from zero, which would indicate that results are either more or less likely (instead of equally
likely) to be inconsistent if they are reported in a COVID-19 preprint than in a non-COVID-19
preprint. We retain a significance level of α = 0.05, because we believe a 0.05 probability of making a
Type-I error is acceptable in this study. Furthermore, a significance level of α = 0.05 in combination
with our sample size enables us to detect an odds ratio of approximately 1.38 with 80% power (see
electronic supplementary material, 1 at https://osf.io/7kcja), which we consider practically relevant.

Next to conducting a frequentist hypothesis test, we also employed Bayesian hypothesis testing. We
computed approximated adjusted fractional Bayes factors [27] to compare two models with each other
where γ01 = 0 and γ01≠ 0 using the default implementation in the R package BFpack ([28]; v. 1.0.0).
Comparing these two models is the Bayesian equivalent of the two-tailed frequentist hypothesis test
that we propose. The approximated adjusted fractional Bayes factor uses a minimal fraction of the
available data to train a non-informative normally distributed prior and approximate the marginal
likelihood of the tested hypotheses.

We also ran another logistic multi-level model where we extended the model above by including
control variables to study whether the estimated effect is affected by including other variables in the
model. Note that the parameter estimated in this second model is different from the parameter in the
model without control variables, because the parameter in the second model refers to the effect
controlled for the other variables. All control variables were measured at the preprint level. The
control variables that were included are: the number of authors of a preprint (continuous variable),
the number of days a preprint was published after the first COVID-19 preprint was published (19
January 2020), and the total number of extracted statistics in a preprint. The number of authors of a
preprint and number of days a preprint was published after 19 January 2020 were included for the
same reasons as using these variables for creating strata in the stratified random sampling procedure.
The total number of extracted statistics in a preprint was included to take into account that a
statistical inconsistency is more likely to occur if many statistics are reported in a preprint. We again
tested whether there is a difference in how likely a statistical reporting inconsistency is in a COVID-19
preprint compared with a non-COVID-19 preprint using the outlined frequentist hypothesis test above
(with α = 0.05) as well as by computing the proposed Bayes factor. We used the R package lme4 ([29];
v. 1.1-33) for fitting the logistic multi-level models. R code of our planned analyses is available at
https://osf.io/9emzb. We had to make small changes to the R code to ensure that the preregistered
code could be applied. This modified R code is available at https://osf.io/r3892.
3. Results
3.1. Descriptives
Table 2 describes our final sample. Of the 984 sampled COVID-19 preprints and 784 screened non-
COVID-19 preprints, we could extract statistics in 533 preprint pairs (54.2% for COVID-19 and 68.0%
for non-COVID-19). We initially planned to sample 1200 COVID-19 preprints, but it turned out that
more preprints than the expected 45% specified in the power analysis contained statistical results.
Hence, we stopped data collection when 1200 × 0.45 = 540 COVID-19 preprints with statistical results
were coded. We ended up with 533 preprints, because some preprints were accidentally coded twice
and after manually verifying the extracted statistics in the case of an inconsistency we found that
some statistics should not have been included in the sample. The vast majority of preprints came from

https://osf.io/7kcja
https://osf.io/9emzb
https://osf.io/r3892


Table 2. Descriptive statistics of the final sample of preprints under analysis.

COVID-19 non-COVID-19

preprints with statistics 533 533

number of statistics in preprints with statistics mean: 42.2 mean: 34.0

median: 13 (IQR = 50) median: 12 (IQR = 41)

authors on a preprint mean: 11.1 mean: 10.3

median: 8 (IQR = 10) median: 8 (IQR = 8)

preprints from medRxiv and bioRxiv (%) medRxiv: 462 (86.7%) medRxiv: 482 (90.4%)

bioRxiv: 71 (13.3%) bioRxiv: 51 (9.6%)
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medRxiv for COVID-19 (462, 86.7%) and non-COVID-19 (482, 90.4%) preprints. The mean number of
statistics in a preprint was slightly higher in COVID-19 preprints than non-COVID-19 preprints (42.2
versus 34.0, respectively), but the medians and IQRs were similar (table 2).

The matching procedure yielded 1039 matched preprints that met all matching criteria (i.e. published
on the same preprint server, in the same subject category, in the same month of the year, and with
the same category of number of authors). In 115 cases, a matching preprint could not be found in
which all criteria were met, but there was a matching preprint available in the adjacent month to the
month the COVID-19 preprint was submitted. In 36 cases, a matching preprint was found where only
the criterion of the number of authors needed to be relaxed such that a matching preprint was
selected that belonged to an adjacent category. In 55 cases, the matching was only done on version
and subject category.3

We realized during the data analysis that a bug in our code caused the correct matching preprint to be
coded in only 489 (91.7%) preprints. In the remaining 44 (8.3%) preprints, a non-COVID-19 preprint was
coded that was not a match for the COVID-19 preprint. Since the non-matching preprints still came from
the relevant preprint servers and general timeframe, we decided to report the results based on all coded
preprints in the paper. This way, we still make use of all available evidence. Additionally, a sensitivity
analysis based on the 489 correctly matched preprints showed that it did not change the conclusions
of our study (see electronic supplementary material, tables S6 and S7).

We compared the preprints in the COVID-19 and non-COVID-19 group on the matching
characteristics and confirmed that the mean number of authors on a preprint was close for COVID-19
and non-COVID-19 preprints (11.1 versus 10.3, respectively, with identical medians of 8). We also
obtained a similar distribution of preprints over time for the COVID-19 and non-COVID-19 preprints
(figure 2). Finally, the distribution of the COVID-19 and non-COVID-19 preprints over the subject
categories was similar to well. We report details on the included preprints per subject category in
electronic supplementary material, table S1.

In total, across COVID-19 and non-COVID-19 preprints we initially extracted 40 838 statistics.
Applying our R script to check the statistics for inconsistencies initially yielded 4396 inconsistencies
(10.8%). We then manually verified all inconsistencies. In 205 cases, the statistics should not have been
extracted (4.7%; e.g. percentages in tables that were coded as marginals), and in 441 cases (10.5% of
the 4191 remaining flagged inconsistencies) the inconsistency was due to a mistake in the data
extraction. This left us with a total of 40 633 correctly extracted statistics, of which 3750 were actual
inconsistencies (9.2%).

Table 3 shows descriptive results on the prevalence of statistical inconsistencies in COVID-19 and
non-COVID-19 preprints. In total, 286 of the 533 COVID-19 preprints contained at least one
inconsistency, compared with 275 of the 533 non-COVID-19 preprints (53.7% versus 51.6%,
respectively). Of the 22 498 statistics extracted from COVID-19 preprints, 2040 (9.07%) were
inconsistent, compared with 1710 (9.43%) of the 18 135 statistics from non-COVID-19 preprints. Note
that these percentages do not take into account the nested structure of the data: a statistic is likely to
be more similar to a statistic in the same preprint than to a statistic in another preprint. We therefore
also calculated the percentage of inconsistencies within each preprint separately and then calculated
3Note that the total number of matched preprints is equal to 1039+115+36+55=1245. This differs from the total number of sampled
preprints (1231), because some preprints were selected twice as matching preprint. These preprints are only included once in the
data, and we made sure that matching preprints could only be selected once when we became aware of this issue.



Table 3. Prevalence of inconsistent statistics in COVID-19 and non-COVID-19 preprints.

COVID-19 non-COVID-19

total number of preprints 533 533

number of preprints with at least one inconsistency 286 (53.7%) 275 (51.6%) difference in %: 2.1

number of statistics 22 498 18 135

overall number of inconsistencies (%) 2040 (9.1%) 1710 (9.4%) difference in %: −0.3
mean % inconsistencies in a preprint

(takes nesting into account)

9.8% 9.4% difference in %: 0.4

distribution of included preprints over time

preprint category

COVID-19
non-COVID-19de

ns
ity

0.004

0.003

0.002

0.001

0

0 100 200
no. days after the first COVID-19

preprint was published

300

Figure 2. A Gaussian kernel density plot of included preprints over time per preprint category (COVID-19 versus non-COVID-19
preprint).
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the mean across these percentages. To illustrate: say that in paper A 1 out of the 10 reported statistics was
inconsistent (10%) and in paper B 2 out of the 4 statistics were inconsistent (50%). In this example, the
mean percentage of inconsistencies in a paper would then be (10 + 50)/2 = 30%. In our data, this mean
percentage of inconsistencies in COVID-19 preprints was 9.8%, compared with 9.4% in non-COVID-19
preprints. Additionally, figure 3 shows considerable overlap in the COVID-19 and non-COVID-19
distributions of the percentage of inconsistencies within preprints. Taken together, these descriptives
indicate that the difference in inconsistencies between COVID-19 and non-COVID-19 preprints is
small in the current sample.
3.2. Confirmatory analyses
The results of our frequentist confirmatory analyses can be found in table 4. In the model without control
variables, we found no significant difference in the probability that a statistic was inconsistent between
COVID-19 and non-COVID-19 preprints: γ01 = 0.016, 95% CI [−0.216, 0.248], Z = 0.132, p = 0.895. That is,
the odds for an inconsistency in a COVID-19 preprint are exp(0.016) = 1.016 times the odds of an
inconsistency in a non-COVID-19 preprint. The 95% CI of this odds ratio is [0.806; 1.281] suggesting
that there is no evidence for meaningful differences in inconsistency rates between COVID-19 and non-
COVID-19 preprints. The Bayesian hypothesis test was in line with this result and indicated strong
evidence [30] that the prevalence of inconsistencies is the same in COVID-19 and non-COVID-19
preprints. Specifically, given these data, the model where statistical inconsistencies are equally prevalent
in COVID-19 and non-COVID-19 preprints is 51.4 times more likely than the unconstrained model



preprint category

COVID-19
non-COVID-19de

ns
ity

0.15

0.10

0.05

0

0% 25% 50% 75%
statistics in a preprint that were internally inconsistent

100%

Figure 3. A Gaussian kernel density plot of the percentage statistics within a preprint that was inconsistent per preprint category
(COVID-19 versus non-COVID-19 preprint).
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where the prevalence differs between COVID-19 and non-COVID-19 preprints (BF01 = 51.4). The posterior
probability that γ01 equals zero was 0.963.

When controlling for the number of authors on a preprint, the number of days after publication of the
first COVID-19 preprint, and the number of statistics in a preprint, we also found no difference between
the prevalence of reporting inconsistencies between COVID-19 and non-COVID-19 preprints: γ01 = 0.038,
95% CI [−0.193, 0.269], Z = 0.324, p = 0.746 (table 4).4 The conclusions based on the results of the Bayesian
hypothesis test also did not change when including the control variables (BF01 = 49.2). The posterior
probability that γ01 equals zero was 0.961.

Adding the control variables to the model resulted in estimation problems in the frequentist analysis
because the range of the scores on the control variables was large (e.g. the number of statistics in a
preprint ranged from 1 to 801). This could have resulted in incorrect estimates and statistical
inferences for the preregistered model. Therefore, as an additional, unregistered sensitivity analysis we
re-estimated the model but this time after standardizing the control variables. The results of fitting the
preregistered and non-preregistered models yielded comparable results suggesting that the result of
the preregistered model is robust. Hence, we report the results of the preregistered model in table 4
and report the results of the non-preregistered model in the electronic supplementary material
(https://osf.io/7kcja, table S2). In the frequentist analysis, we found no evidence for a difference in
the probability that a statistic was inconsistent between COVID-19 and non-COVID-19 preprints. We
also redid the Bayesian analysis of the model with the standardized control variables, and the results
were again comparable to the preregistered analyses (see electronic supplementary material, table S5).
Again, we found strong evidence in favour of the null model of no difference.
3.3. Exploratory: inconsistencies per type of statistic
We checked the consistency of six different types of statistics. It is possible that some are inherently
more error-prone than others, for instance because the associated statistical output is more complex or
because they consist of a larger set of numbers that all have to be copied correctly to the manuscript.
If one type of statistic occurs more in COVID-19 preprints than in non-COVID-19 research, or
vice versa, it may confound our results. To explore this question, we calculated the number of
4We included the number of preprint authors as a control variable, because statistics can be checked by co-authors in a multi-authored
preprint. However, a large number of co-authors could also lead to a diffusion of responsibility such that no author checks the reported
statistics. This is in line with a quadratic effect of the number of preprint authors, but we preregistered a non-squared effect of number
of preprint authors. Hence, we conducted a sensitivity analysis where we also included the quadratic effect of the number of preprint
authors in the model. The results of the analyses did not change our conclusions. See Tables S3 and S4 in the electronic supplementary
material (https://osf.io/7kcja) for these results.

https://osf.io/7kcja
https://osf.io/7kcja
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preprint category COVID-19 non-COVID-19

no. extracted statistics

% of inconsistencies per type of statistic

type of statistic

17 647

13 064

3561

9.7 10.5

6.6 6.4 5.5 5.3

19.7

19.8

24.2

10.7

14.2

9.1

3235

1075

sample_sizemarginalsperc_ratio

1463

76 220 33 131 106 22

accuracyodds ratiop-value

sample_sizemarginalsperc_ratio accuracyodds ratiop-value
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Figure 4. The top panel shows the number of extracted statistics per type of statistic per preprint category (COVID-19 versus non-
COVID-19 preprint). The results based on COVID-19 preprints are indicated by purple bars and those of non-COVID-19 preprints by
yellow bars. The bottom panel shows the percentage of extracted statistics that was internally inconsistent per preprint category.
Error bars indicate standard errors of the percentages.
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extracted statistics and percentage of inconsistencies per type of statistic, split up for COVID-19 and non-
COVID-19 research (figure 4).

Overall, we found the highest prevalence of inconsistencies in the sample for p-values (test statistics
and degrees of freedom not matching the p-value), odds ratios (cell frequencies not matching the odds
ratios), and accuracy statistics (true/false positives/negatives not matching the sensitivity, specificity,
positive or negative predicted value), as compared with lower inconsistency rates in percentages
(ratios not matching percentages), marginals (cell values not matching marginal values in frequency
tables), and sample sizes (subgroup sizes not matching total sample size). We speculate that this
could reflect a relation between the complexity of the statistic and error-proneness (in line with the
findings of [21]). Inconsistency rates for all types of statistics except for percentages/ratios were
slightly higher for COVID-19 than non-COVID-19 research.
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We note, however, that the prevalence of the different types of statistics differed greatly. The higher
inconsistency rates in p-values, odds ratios and accuracy statistics represent a small number of cases,
which makes it difficult to extrapolate these percentages. To illustrate, we found that 24.2% of the
odds ratios in COVID-19 research were inconsistent. This seemingly staggering percentage is put into
perspective if we consider that it effectively came down to eight inconsistencies in total.
publishing.org/journal/rsos
R.Soc.Open

Sci.10:202326
4. Discussion
In this preregistered natural experiment,we compared the prevalence of statistical reporting inconsistencies
in COVID-19 preprints and in matched non-COVID-19 preprints. We found strong evidence for no
difference in the prevalence of statistical reporting inconsistencies between these two groups.

Our hypothesis was two-sided: on the one hand, we speculated that inconsistencies could be lower in
COVID-19 research, because the perceived importance of the research may have caused researchers to
display more scrutiny in writing up their results. Conversely, we also considered it possible that the
prevalence of inconsistencies could be higher in COVID-19 research, because time pressure and
societal pressure could have led to hasty and sloppy research and reporting. The latter would be in
line with the previously found pattern suggesting that COVID-19 research was less rigorous and
contained more methodological problems [12–16]. Our results did not support either notion: the high
pressure and high speed with which COVID-19 research was conducted did not seem to be associated
with the quality of statistical reporting.

To our knowledge, our study was the first to assess statistical reporting inconsistencies in this context,
and therefore adds to the broader body of literature studying the potential effects of high-speed science.
Even though our design was observational and not experimental, our results may help shed some light
on the specific stages of research that are affected if researchers are put under pressure and/or try to
conduct and publish studies as fast as possible. It may be the case that ‘high-speed publishing’ only
affects methodological quality but not statistical reporting. Generally speaking, designing a study and
collecting data are more time-consuming than writing up an article, so it may be the case that authors
mainly tried to speed up those first research phases (to their detriment), and did not change the way
they reported their findings.

4.1. Limitations
Our design came with certain limitations. First, we specifically focused on the internal consistency of
reported statistics. This means that we could only check results for which all relevant information was
reported. However, it is imaginable that when the statistical analyses are done less carefully, the
reporting may also be done less carefully and not all information might be there to allow a
consistency check. Relatedly, with our procedure, we were not able to spot mistakes or issues in the
way the raw data were collected, processed, or analysed.

Second, our population included preprints published on two specific preprint servers: bioRxiv and
medRxiv. We chose these servers because they provided a curated list of COVID-19 research. This
allowed us to draw a probability sample and search for matching non-COVID-19 preprints. It is
possible that preprints published on other preprints servers differ from the included preprints in
systematic ways. For example, most preprints on bioRxiv and medRxiv are from biology and the
health sciences, whereas COVID-19 research also took place in other scientific fields (e.g. psychology),
and are therefore uploaded to other preprint servers (e.g. PsyArXiv). However, since bioRxiv and
medRxiv (the latter, specifically) have played the biggest role in distributing COVID-19 preprints [2],
we think they were the most relevant servers to study.

Third, we do not know to what extent our findings generalize to published papers. An important
difference between preprints and published papers is that the latter are peer reviewed. One could
expect that the overall inconsistency rates in published papers would therefore be lower than in
unreviewed preprints (e.g. Carneiro et al. [31], who found a small improvement in reporting quality in
peer-reviewed papers compared with the corresponding preprints). However, given the high prevalence
of statistical reporting inconsistencies in the published literature [21,22], it seems that the peer review
process has not been sufficiently effective in correcting statistical reporting errors. It may be possible to
compare the inconsistency rates in preprints we found in this study to the inconsistency rates in
published papers found by Georgescu & Wren [21]. However, this cannot be directly compared since
our approaches are not fully equivalent: Georgescu and Wren looked only at statistical ratios (hazard
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ratio, odds ratio, and relative risk) in abstracts, whereas we included a wider range of statistics reported in
the full text. One avenue for future research is to use our materials to study (the same types of) statistical
inconsistencies in published studies. This would allow for a more direct comparison with our results.
Additionally, future research could check whether the statistical inconsistencies that we observed in
preprints are still there in the published versions of these preprints. If the inconsistencies are no longer
in the published versions, this would increase trust in peer-review, since it is quite likely that the
inconsistencies were spotted and corrected during the review process.

Fourth, we selected our matched control group in order to compare the COVID-19 preprints with
‘research as usual’. However, the included non-COVID-19 preprints were uploaded during the same
time period as the COVID-19 preprints, and probably contained many studies that were conducted
during the pandemic. It is possible that the authors of the selected preprints (both COVID-19 and
non-COVID-19) experienced challenges in doing their research (e.g. working from home, having
limited access to laboratories, and having difficulties finding and/or working with participants due to
social distancing and related measures), which could have led to higher work pressure and higher
inconsistency rates in both groups. However, we are unable to determine this based on our data. That
being said, we do note that the inconsistency rates in COVID-19 and non-COVID-19 preprints are
similar to the inconsistency rates found in psychology research over the years (approx. 10% of
statistics is inconsistent; [22]), so we have no immediate reason to suspect that reporting
inconsistencies increased during the pandemic.

4.2. Implications for understanding statistical reporting inconsistencies
This work has theoretical implications for understanding how statistical inconsistencies arise. Statistical
inconsistencies appear to be widespread across different scientific fields [19–23] but little is known about
what the main reasons are that such inconsistencies arise. Understanding where and why the problem of
statistical misreporting occurs is important to design interventions to prevent statistical errors in future
studies. Are inconsistencies a result of insufficient statistical knowledge and should we invest more in
statistical education? Are inconsistencies conscious or unconscious misrepresentations of the data to
draw more favourable conclusions and should we prioritize integrity training? Are inconsistencies
simply random typos that could be solved by steering authors towards software such as RMarkdown?5

In this study, we hypothesized that time pressure and strong societal interests could affect reporting
quality. As a proxy for these factors, we compared COVID-19 and non-COVID-19 preprints, because
these types of research arguably differed in these aspects. However, we found strong evidence that
there is no difference in inconsistencies between COVID-19 and non-COVID-19 preprints, which
provides preliminary, indirect evidence against the notion that time pressure and/or societal pressure
may lead to sloppy statistics reporting. So far, previous literature provides some evidence that
inconsistencies are associated with a lack of data sharing ([32]; but see [33]), fewer authors on a paper
([21]; but see [34]), lower journal impact factor [21], and more complex statistics ([21]; also in line with
our exploratory findings in this paper). There are indications that there is a systematic tendency of
inconsistencies to be in favour of the authors’ conclusions [19,35], but the bulk of reporting
inconsistencies does not seem to have a direct effect on statistical conclusions [22].

While these studies have suggested several potential avenues for providing interventions aimed at
preventing statistical inconsistencies, not many interventions have been designed, tested and
implemented. One study that did assess a potential intervention looked at statcheck as a possible tool for
preventing statistical inconsistencies [36]. statcheck is a free R package and web app that automatically
extracts p-values from articles and checks whether they match their accompanying test statistic and
degrees of freedom [37]. The authors found fewer inconsistencies in articles published in journals that
used statcheck in their peer review process compared with matched control journals. This indicates that
automated screening tools during the peer review process could potentially help decrease statistical
reporting inconsistencies. Because statcheck is currently only able to process APA-formatted manuscripts,
it would be valuable to extend statcheck so that it can also automatically check the statistics in papers
with different formats, like the ones we assessed in this paper. We note that the lack of general reporting
guidelines with respect to statistical results severely hampers automated screening. Our current dataset
of over 40 000 manually extracted statistics may serve as a validation set for future automated screening
tools or as training data for methods based on artificial intelligence.
5RMarkdown allows to conduct the analyses inside the paper such that the results of the analyses can automatically be inserted in the
text rather than copy-and-pasted from the output.
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We note that—to our knowledge—all research on statistical reporting inconsistencies has been
observational (descriptive or correlational). It would be useful to extend the current literature by
performing randomized controlled trials that systematically investigate different potential causes of
inconsistencies and/or directly test interventions.

4.3. Implications for the medical and biological sciences
Our findings also have practical implications for themedical and biological sciences.We note that the overall
inconsistency ratewe found in our sample of medical and biological preprints was substantial: roughly 1 in
11 reported statistics was internally inconsistent. Since we did not assess the size of the discrepancies or
whether an inconsistency pertained to a key result or not, we do not know to what extent the discovered
inconsistencies substantially affected conclusions. However, any inconsistency in a statistical result
renders it ‘irreproducible’ [38,39], which means that the reported result cannot be traced back to the
underlying data. Reproducibility is a basic, necessary requirement for robust science, because it allows
other researchers to verify results: if we do not know where a number came from, how can we interpret it?

Althoughmuch is still unclear about the specific causes of statistical inconsistencies in particular,we can
make some recommendations to improve general analytical reproducibility. Low hanging fruit would be
for authors themselves to double-check the internal consistency of their reported statistics, where
possible with automated tools such as statcheck [37]. However, to really improve reproducibility, authors
should share (anonymized) raw data and analysis code, preferably in line with the FAIR principles
(findable, accessible, interoperable and reusable; [40]). Making data and code available does not only
allow others to rerun the analyses and spot potential mistakes, it also allows for sensitivity analyses and
in some cases might even allow for answering or generating new research questions.
5. Conclusion
The COVID-19 pandemic created a unique setting to study the effect of high-speed scientific publishing
on the statistical reporting quality. In this study, we found no indication that such high-speed science is
related to the number of statistical reporting inconsistencies. Taken together with previous research, our
results suggest that COVID-19 research may on average have more methodological problems than non-
COVID-19 research, but there is no difference in the statistical reporting quality. That said, the overall
prevalence of statistical reporting inconsistencies in the biological and health sciences shows that the
scientific community still has room for improving the reproducibility of published research.
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