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Abstract 

We examined the evidence for heterogeneity (of effect sizes) when only minor changes 

to sample population and settings were made between studies and explored the association 

between heterogeneity and average effect size in a sample of 68 meta-analyses from 

thirteen pre-registered multi-lab direct replication projects in social and cognitive psychology. 

Amongst the many examined effects, examples include the Stroop effect, the “verbal 

overshadowing” effect, and various priming effects such as “anchoring” effects. We found 

limited heterogeneity; 48/68 (71%) meta-analyses had non-significant heterogeneity, and 

most (49/68; 72%) were most likely to have zero to small heterogeneity. Power to detect 

small heterogeneity (as defined by Higgins, 2003) was low for all projects (mean 43%), but 

good to excellent for medium and large heterogeneity. Our findings thus show little evidence 

of widespread heterogeneity in direct replication studies in social and cognitive psychology, 

suggesting that minor changes in sample population and settings are unlikely to affect 

research outcomes in these fields of psychology. We also found strong correlations between 

observed average effect sizes (standardized mean differences and log odds ratios) and 

heterogeneity in our sample. Our results suggest that heterogeneity and moderation of 

effects is unlikely for a zero average true effect size, but increasingly likely for larger average 

true effect size. 
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Public Significance Statement 

This paper suggests that for direct replications in social and cognitive psychology 

research, small variations in design (sample settings and population) are an unlikely 

explanation for differences in findings of studies. Differences in findings of direct replications 

are particularly unlikely if the overall effect is (close to) zero, whereas these differences are 

more likely if the overall effect is larger.  



Heterogeneity in direct replications in psychology and its association with effect size 

Empirical research is typically portrayed as proceeding in two stages. First, belief in the 

existence of an effect is established. Second, the effect's generalizability is examined by 

exploring its boundary conditions (Simons et al., 2017). In the first stage, inferential statistics 

(including testing of statistical hypotheses, confidence intervals, or Bayesian analyses) are 

used to minimize the risk that a discovery is due to sampling error. In the second stage, one 

may ask to what extent the effect depends on a particular choice of four contextual factors; 

the 1) sample population, 2) settings, 3) treatment variables and 4) measurement variables 

(e.g., Campbell & Stanley, 2015). This extent is often explored through replications of the 

original study that are either as similar as possible to the original (called 'direct' or 'exact' 

replications) or with some deliberate variation on conceptual factors (so-called 'conceptual' or 

'indirect' replications; Zwaan et al., 2017), and once sufficient studies have accumulated 

through meta-analysis. In meta-analysis, the heterogeneity of an effect size (henceforth 

referred to as heterogeneity) is a measure of an effect's susceptibility to changes in these 

four factors. An effect strongly dependent on one or more of the four factors, unless 

controlled for, should exhibit high heterogeneity. In this paper we examine the heterogeneity 

in replication studies in psychology, focusing on direct replications, and explore a proposed 

relationship between effect size and heterogeneity. 

The possibility of heterogeneity can create controversy in the interpretation of 

replication results. The proclamation of a 'failure' to replicate an effect (by the reader’s 

preferred definition) is sometimes taken to suggest that the original finding was merely a 

false positive, due to 'p-hacking' (Simmons et al., 2011) or publication bias (Inzlicht et al., 

2015). Unsurprisingly, some researchers take offense (e.g., Baumeister, 2016), interpreting 

such implications as attacks on their abilities as researchers. An alternative explanation for 

non-replication, often espoused by the original authors (e.g, IJzerman et al.,, 2015; Strack, 

2016), is that the effect is more heterogeneous than (perhaps implicitly) claimed originally, 

meaning that the true effect varies across contextual factors as described earlier. From this 



perspective, non-replication implies (possibly previously unknown) predictors of effect size, 

so called 'hidden moderators' (Van Bavel, 2016), the discovery of which can be seen as an 

opportunity for theoretical advancement (Simons et al., 2017; McShane et al., 2019). To 

attenuate the risk of heated discussions on the (non)existence of an effect, original authors 

have been recommended to pre-specify the degree of heterogeneity that would make them 

lose interest in the effect (e.g., by declaring 'constraints on generality';  Simons et al., 2017). 

It is commonly believed that heterogeneity is the norm in psychology. In support of this 

notion, recent large scale reviews of meta-analyses in psychology (Stanley et al., 2017; Van 

Erp, et al., 2017) report median heterogeneity levels that can best be described as 'large' 

(see the section ‘Quantifying heterogeneity’). In comparison, the median heterogeneity 

estimate in medicine (Ioannidis et al., , 2007) would be considered 'small' by the same 

standard. It may simply be that effects in psychology are more heterogeneous than those of 

medicine. However, meta-analyses in psychology also typically include more studies than 

those in medicine, and it could be that they tend to include studies from a much broader 

spectrum. That is, varying on more contextual factors (sample population, settings, treatment 

variables, measurement variables) or varying more on these four factors than what is typical 

in medicine. The median number of studies (effect sizes) per meta-analysis in the 

psychology sample of Van Erp et al. (2017) was 12, whereas in medicine it was only 3 

(Davey et al., 2011). It is difficult to separate these explanations (intrinsically more 

heterogeneity, or psychology including studies from a broader spectrum?). To facilitate doing 

so, in this paper we focus on meta-analyses of only direct replications, which are exempt 

from the potential problem of including too disparate studies. Our sample consists of all pre-

registered multi-lab direct replication projects in psychology available on curatescience.org 

up until 2019-10-25. By only including pre-registered multi-lab studies we also avoid the 

issue of publication bias, which can have a large and unpredictable effect on the assessment 

of heterogeneity (Augusteijn et al., 2018), as well as on the assessment of the effect size 

itself (e.g., Dickersin, 2005; Simes 1986). 



Heterogeneity is often considered a primary outcome in meta-analysis for good 

reasons. As described above, unaccounted for heterogeneity suggests that a theory is 

unable to predict all contextual factors of importance to its claims and its existence affects 

the interpretation of replication outcomes. Moreover, unaccounted for heterogeneity can 

have practical consequences not to be ignored. This is readily evident for medicine, where in 

the case of heterogeneity an intervention, such as a medication, that is successful for some 

may have direct negative health consequences for others. The same is true of mental health 

interventions in psychology. Heterogeneity can also have major consequences for topics 

such as child development, education, and business performance, where research often 

impacts policy recommendations. A newly implemented policy to, say, help socialize children 

(e.g., in a day care), improve learning outcomes in education or employee satisfaction in 

business, which works only in some contexts or for some individuals and not others (i.e., is 

heterogeneous) could have an overall null or even negative impact instead of positive. 

Awareness of heterogeneity thus affects the cost-benefit analysis of whether to implement a 

particular policy. In other words, heterogeneity should be no less of a concern for 

psychologists than for medical practitioners. 

Heterogeneity also affects meta-analytic techniques used to statistically summarize 

findings on a certain topic. Heterogeneity alters the interpretation of meta-analytic estimates 

as either the true effect size (under homogeneity) or the average of the true effect sizes 

(under heterogeneity), though one may question the usefulness of interpreting the average 

true effect size in the presence of heterogeneity (Simonsohn, 2017), just as it may be 

questionable to interpret an average main effect in the context of an interaction effect (Aiken 

et al., 1991). In addition, techniques that attempt to correct for publication bias in their 

estimate tend to fail in the presence of heterogeneity (Carter et al., 2019; McShane et al., 

2016; Stanley, 2017; van Aert, 2018; van Aert et al., 2016; van Assen et al., 2015), which is 

problematic if we believe publication bias is widespread in psychology (Cooper et al., 1997; 

Franco et al., 2014, 2016; although see Stanley et al. 2018 and van Aert et al., 2019 for 

opposing conclusions) . To conclude, heterogeneity or its absence provides vital information 



for the implementation of research in practice, the advancement of theory, and the 

interpretation of research outcomes.  

 

Assessing heterogeneity can be problematic due to its inherent uncertainty. 

Heterogeneity is often measured by the I2 index (Higgins, 2003; Higgins & Thompson, 2002). 

It can be interpreted as the percentage of variability in observed effect sizes in a meta-

analysis that is due to heterogeneity amongst the true effect sizes (that is, sensitivity to 

contextual factors) rather than sampling variance, and ranges from 0-100%. More formally, 

𝐼2 =  �̂�2 / (�̂�2 +  �̂�2), where �̂�2 is the estimated between-studies variance and �̂�2 is an 

estimate of the ‘typical’ within-studies variance, and I2 is set to zero if negative. An alternative 

but related index of heterogeneity is H2 (Higgins & Thompson, 2002), with H2 = 1/(1- I2) or 

(for the DerSimonian-Laird estimator) H2 = Q/(K-1). As opposed to I2, H2
 is not truncated 

(when Q < K – 1), and H2 ranges from zero to infinity, with higher values signaling more 

heterogeneity, with a value of 1 indicating homogeneity. 

The I2 index has several advantages when using it for meta-research as in our paper. 

First, it has an easy and intuitive interpretation as it is between 0 and 100%. Second, well-

known rules of thumb (Higgins, 2003) exist to interpret values of I2 as small (25%), medium 

(50%), or large (75%). As with all rules of thumb these should be used with caution. We do 

not use these labels normatively, but just as examples of “small”, “medium” and “large” 

heterogeneity. Third, I2 can be computed for any effect size metric (correlations, standardized 

mean differences, odds ratios, etc.), without having to transform effect sizes to a specific 

metric. And finally, most large meta-meta analyses also employ I2, which allows for 

comparing results of different meta-meta analyses. Two well-known examples of such large 

scale meta-meta analyses are Ioannidis et al., (2007) in medicine, and Van Erp et al., (2017) 

in psychology. Because of these advantages we employ I2 (and its relative H2) as one of our 

heterogeneity indices in our paper. 

Quantifying Heterogeneity 



However, I2 also has two important disadvantages. First, I2 is not an absolute but a 

relative measure of heterogeneity, as it is dependent on the primary studies’ sample sizes 

(Borenstein et al., 2017; Rücker et al., 2008). For instance, keeping constant �̂�2, multiplying 

all primary studies’ sample sizes with 3 will increase I2 from small to medium (25% to 50%) or 

medium to large (50% to 75%), and multiplying with 9 will turn a small I2 into a large I2. Note 

that this characteristic of I2 also implies that values 25, 50, 75% cannot be normatively used 

as labels for small, medium, large heterogeneity, respectively. Second, even though 

heterogeneity of all different effect sizes (correlations, standardized mean differences, odds 

ratios) are placed on the same I2 scale, one can argue that I2 values originating from different 

effect size metrics cannot be directly compared as they are based on different distributions 

and assumptions. Hence, these two disadvantages also call for another assessment of effect 

size heterogeneity, and estimators of 𝜏 seem to be the most promising alternatives, although 

𝜏 estimates also cannot be compared across effect size types.  

The Pearson’s correlation and their Fisher-transformed counterparts could be a viable 

alternative for a common effect size metric. It is possible to transform effect sizes such as 

mean differences to point-biserial correlations, which are simply Pearson’s correlations as 

applied to dichotomous data (see e.g., Borenstein, 2009; Schmidt & Hunter, 2015). However, 

there are potential concerns with transforming effect sizes to either Pearson or Fisher-

transformed correlations. Our analyses revealed two undesirable characteristics of 

(transformed to) point-biserial correlations, making them inappropriate for answering our 

main research questions on heterogeneity of effect size in multi-lab direct replications and its 

association to average effect size. First, values of �̂� are restricted for larger values of average 

effect size as the point-biserial correlation gets closer to 1, implying a possible unwanted 

negative association between average effect size and effect size heterogeneity. Second, 

while transforming from one metric to the point-biserial correlation, strong assumptions need 

to be made. Both undesirable characteristics may lead to serious distortions of heterogeneity 

assessment. For instance, if �̂�𝐴 > �̂�𝐵 for two meta-analyses A and B based on exactly the 

same sample sizes and assessed on the same metric (e.g., standardized mean differences), 



then after transforming to point-biserial correlations the order of heterogeneity assessments 

may be reversed (see Supplement A for an illustration using our data). This issue is 

alleviated by using the Fisher-transformation, although violations of non-monotonicity may 

still be observed (see Supplement A). These findings suggest that researchers should 

carefully consider whether it is advisable to combine or transform effect sizes from different 

effect size metrics in a meta-analysis.  

Another alternative estimator of heterogeneity is using 𝜏 based on the original effect 

size metrics. Estimates of 𝜏 can then not be compared across meta-analyses based on 

different metrics, but can be straightforwardly compared across meta-analyses based on the 

same metric, without having the disadvantages detailed above (negative association 

between average effect size and heterogeneity, strong assumptions) of using a common 

effect size metric. Hence, in addition to I2 we also report results of 𝜏 based on the original 

metric. The consequence for our analysis on the association between heterogeneity and 

average effect sizes is that we only estimate this association for standardized mean 

difference and log odds ratios, since other effect size types (correlations, Cohen’s q) were 

rare in our dataset (see Methods section).  

Uncertainty and Statistical Power of Heterogeneity Assessment 

Tests of heterogeneity typically have low statistical power in many practical situations 

(Huedo-Medina et al., 2006; Jackson, 2006). This complicates the discussion of 

heterogeneity, because while I2 always provides an estimate of heterogeneity, this estimate 

is often accompanied by high uncertainty and by wide confidence intervals (Ioannidis et al., 

2007). For example, Ioannidis reports that in a large set of Cochrane meta-analyses, all 

meta-analyses with I2 point estimates of 0% had upper 95% confidence intervals that 

exceeded I2 estimates of 33%, exceeding what Higgins (2003) defined as 'small' 

heterogeneity. In addition, under homogeneity the Q-statistic has a central chi-square 

distribution (von Hippel, 2015), a distribution that is right-skewed with 40-50% of 

observations falling above the expected value (for all k > 3). As point estimates of both 𝜏 and 



I2 are related (this relation is one-to-one, i.e., Q > df implies 𝜏 2 > 0 and I2 > 0), a meta-

analysis of 4 or more studies will also have close to 50% of estimates exceeding 0, even in 

the absence of true heterogeneity.  

To simplify interpretation of estimates of 𝜏 and I2, we will report both these estimates as 

well as their confidence intervals, and report the results of power analyses of the Q-test of 

heterogeneity assuming zero/small/medium/large heterogeneity (here defined as I2 = 

0/25/50/75%, respectively). Conducting power analyses is necessary as a high frequency of 

zero estimates of  𝜏 and I2 as well as a high frequency of confidence intervals including 0 can 

be the result of, for instance, either (i) a high frequency of true homogeneity, or (ii) a high 

frequency of true heterogeneity but combined with low statistical power. We need to be able 

to distinguish between these two cases. The power analyses additionally provide information 

to researchers on how many labs and participants may be needed to assess certain 

heterogeneity, based on real data rather than only simulations (Huedo-Medina et al., 2006; 

Jackson, 2006) and in a context highly similar to that of future multi-lab projects (e.g., 

Registered Replication Reports, ManyBabies, the Psych Science Accelerator).  

 

Effect size is likely associated with heterogeneity. Intuitively, it makes sense to believe 

that if the meta-analytic effect size is zero there is nothing to moderate (i.e., no 

heterogeneity). However, a null or near null (average) effect size estimate may arise from 

failure to consider contextual factors ('hidden moderators'; Van Bavel, 2016) and does not by 

itself imply the absence of heterogeneity. To the contrary, a large meta-analytic effect size  

can be expected to be associated with more heterogeneity. To explain further, consider first 

the definition of heterogeneity. 

 Heterogeneity is defined as the standard deviation of the true (study-level) effect sizes. 

True effect size, however, may refer to two possibly very different entities. First, it may refer 

to the effect size that is obtained for a study with an infinite sample size (or having the 

complete population of subjects in one’s study; in any case, sampling error equals 0). 

Association Between Effect Size and Heterogeneity 



Second, the true effect size of a single study may refer to an effect size obtained with an 

infinite sample size but that is also corrected for unreliability of the measurements. We need 

to distinguish both entities when assessing and interpreting the average true effect size and 

true effect size heterogeneity, and their estimates. 

Estimates of effect size heterogeneity always attempt to ‘partial out’ sampling error. 

Whether heterogeneity estimates also partial out measurement error depends on whether 

effect sizes were corrected for unreliability beforehand (in which case standard errors must 

also be corrected; Schmidt & Hunter, 2015, p. 314-320). Typically measurement error is not 

corrected for when estimating individual study effect sizes in a meta-analysis (although the 

field of Industrial-Organizational psychology is an exception to this rule). None of the thirteen 

multi-lab projects did so in any of the 68 meta-analyses. We therefore also do not attempt to 

correct for measurement error when estimating average effect size and effect size 

heterogeneity, and true (study-level) effect sizes in our paper refer to the effect size obtained 

by that study if sample size were infinite (i.e., the first entity). Below we illustrate how 

measurement error may result in a positive association between effect size as thus 

conceptualized, and heterogeneity. 

To illustrate, consider a meta-analysis of say, the correlation between neuroticism and 

procrastination (e.g., Steel, 2007). Each included study would need to measure the two 

variables somehow, possibly the same way across studies in the meta-analysis. However, 

because of individual differences and differences in study samples, measurement reliabilities 

may differ across studies either due to sampling variance (that the sample happens to be 

more or less homogeneous) or to differences in contextual factors (e.g., sampling population, 

measurement variables). This means that even if the underlying true effect size (after 

correcting for measurement error; second entity above) is the same, the correlation between 

the two variables will differ between studies (see also Schmidt & Hunter, 2015). Assuming no 

association exists between reliability and true effect size (second entity above), differences in 

observed study effect sizes will increase with the underlying true effect size, resulting in more 



variability being ascribed to heterogeneity. More formally, an observed correlation 𝑟𝑥𝑦 can be 

expressed as the product of the true correlation or effect size (second entity), 𝜌𝑥𝑦, multiplied 

by the square root of the measurement reliabilities for X (𝑅𝑥𝑥′) and Y (𝑅𝑦𝑦′): 𝑟𝑥𝑦 = 𝜌𝑥𝑦 ×

√𝑅𝑥𝑥′ × √𝑅𝑦𝑦′. As such, keeping constant study differences in √𝑅𝑥𝑥′ × √𝑅𝑦𝑦′ while 

increasing true effect size 𝜌𝑥𝑦 (second entity) increases heterogeneity of effect sizes (first 

entity). Table 1 illustrates this relationship using three values of 𝑟𝑥𝑦 and true study-level effect 

sizes. We therefore explore with a correlational analysis if a positive association exists 

between effect size and heterogeneity in the sample of pre-registered multi-lab replication 

projects in psychology. 

 

Table 1. 

Variation in observed effect sizes as a function of true effect size and measurement 

reliability. 

  Observed Effect Sizes  

  Study 1 Study 2 Study 3  

Meta-Analysis 𝝆𝒙𝒚 √𝑹𝒙𝒙′ × √𝑹𝒚𝒚′.  = .60 √𝑹𝒙𝒙′ × √𝑹𝒚𝒚′.  = .70 √𝑹𝒙𝒙′ × √𝑹𝒚𝒚′.  = .80 SD (ES) 

I 0.00 0.00 0.00 0.00 0.00 

II 0.30 0.18 0.21 0.24 0.03 

III 0.50 0.30 0.35 0.40 0.05 

Note. The values under Study 1, 2 and 3 are observed effect sizes for that study given its 

measurement reliability √𝑅𝑥𝑥′ × √𝑅𝑦𝑦′ and the true effect size 𝜌𝑥𝑦 when within-study sample 

size is infinite. SD (ES) is the standard deviation of the observed effect sizes for meta-

analysis I, II and III, equivalent to heterogeneity given infinite within-study sample sizes. 

Code to reproduce table: osf.io/gtfjn  

  

The Pre-registered Multi-lab Replication Projects 

Table 2 lists the thirteen replication projects, with a total of 68 primary outcome 

variables, we used to examine heterogeneity and the correlation between effect size and 

heterogeneity in psychology. These “Many Labs” and “Registered Replication Report” (RRR) 



projects are a recent phenomenon in psychological science where multiple labs collaborate 

to replicate one or multiple effects from the psychological literature. Fundamental to these 

projects is that they are pre-registered and that each collaborating lab uses the exact same 

materials (possibly with language translations), so that essentially the only difference 

between participating labs is that they run the study in different locations and using different 

people. This also means that heterogeneity estimates based on these data only reflect this 

type of variation in sample population and settings. The projects are often done to examine 

the robustness of seminal findings with high impact and typically in discussion with the 

original authors. The principal difference between Many Labs and RRR projects is that the 

Many Labs include multiple distinct psychological effects (all run in one session), whereas 

the RRRs focus only on one effect. That we report multiple effects for three of the RRRs in 

Table 2 is because they used multiple primary outcome variables.  

We would consider most of the effects described in Table 2 to belong to social and 

cognitive psychology (and Many Labs 2 explicitly selected effects from these domains). As 

an example, RRR8 (O’Donnell et al., 2017) replicated an experiment examining the link 

between priming of social categories (soccer hooligan/professor) and objective knowledge 

performance (a trivia quiz). Priming can be viewed as the idea that brief (often subconscious) 

exposure to a concept should activate related concepts or behavior. The experiment 

replicated by the RRR8 authors has been cited more than 800 times, and the manipulation 

(“professor priming”) is well known in the field of social psychology (O’Donnell et al., 2017). 

However, O’Donnel et al. report that when RRR8 was organized there had been increasing 

debate over the validity of priming effects in the past years, including of the “professor 

priming” effect. RRR8 was set up in response to this controversy. Many of the studied effects 

(as in the case of O’Donnell et al.) used priming (23 effects) in their design. Others asked 

participants to imagine different situations (14 effects) or to react to slightly different 

statements (six effects), with the remainder using a variety of approaches (see Table 2). We 

present only a succinct summary of the studied results and direct readers to the original 

multi-lab publications for more detailed descriptions.  



In reference to meta-analyses of direct replications, McShane with several co-authors 

(McShane et al., 2016; 2019) have argued that if we were to expect heterogeneity to be 

absent or minimal anywhere, it would be in pre-registered multi-lab projects with a common 

protocol (such as Klein et al., 2014). They further argue that the fact that heterogeneity has 

been reported even under such circumstances is an indication of widespread heterogeneity 

in psychology, although McShane (personal communication, July 19, 2019) acknowledges 

that expected heterogeneity in multi-lab replication projects is much smaller than in large 

scale meta-analyses in psychology. However, In the case of multi-lab direct replication 

projects, studies still vary on two contextual factors (sample population and settings) and if 

we believe an effect is sensitive to changes in these two factors we might also expect to find 

some heterogeneity. 

As all thirteen projects in our dataset were (relatively) large-scale and pre-registered, 

our dataset arguably represents the best meta-analytic data currently available in 

psychology. To better interpret the heterogeneity estimates we also estimate power of each 

project to find zero/small/medium/large heterogeneity by the definitions of Higgins (2003). 

Consequently, our analyses will provide information on how two contextual factors (sample 

population and settings) may affect consistency or heterogeneity of effects in psychology, 

and on the precision of its estimate. 

 

 

 

 

 

 

 



Table 2. 

Pre-registered multi-lab replication projects 

RP Paper Countries K (US) Effects N Sample and Settings Description of Effects 

ML1 Klein et al. 
(2014) 

10 36 (25) 16 5975 26/36 samples were primarily 
university students, 3 general 
population and 7 undescribed. 
9/36 samples were online, 
including all the general population 
ones. 

Two correlational effects: ‘Gender math attitude’ compared implicit attitudes (IAT) towards math 
between genders and ‘IAT correlation math’ correlated implicit attitudes with self-reported 
measures. The remainder were experiments with two independent groups. The groups were 
primed in some way (Anchoring 1-4; low vs. high category scales; norm of reciprocity; flag priming; 
currency priming), asked to imagine slightly different situations (Sunk costs; gain vs. loss framing; 
gambler’s fallacy; imagined contact) or asked their agreement with statements presented 
differently (Allowed vs. forbidden; quote attribution). 

ML2 Klein et al. 
(2018) 

35 115 (21) 28 6570 79/125 samples were collected in 
person (typically in labs), 
remainder online. Mean age in two 
rounds of data collection were 
22.67 and 23.34 years. 

Most effects were experiments with two independent groups. Often participants were primed in 
some way (Structure & Goal Pursuit, Priming Consumerism, Incidental Anchors, Position & Power, 
Moral Cleansing, Priming Warmth) or asked to imagine slightly different situations (SMS & Well-
Being, Less is Better, Moral Typecasting, Intentional Side-Effects, Tempting Fate, Affect & Risk, 
Trolley Dilemma 1, Framing, Trolley Dilemma 2, Disgust & Homophobia, Choosing or Rejecting). 
Some groups saw slightly different statements (Correspondence Bias, Intuitive Reasoning), were 
asked to perform slightly different tasks (Direction & SES, Actions are Choices), or had to read a 
text with a clear vs. unclear font (Incidental Disfluency). Two correlational effects measured the 
correlations of Moral Foundations with political leaning, and Social Value Orientation with family 
size. Two effects examined order effects (Assimilation & Contrasts, Direction & Similarity). Finally, 
in False Consensus 1 and 2, participants made a binary choice and estimated how many people 
had made the same choice. 

ML3 Ebersole et al. 
(2016) 

2 21 (19) 10 2845 20/21 samples were university 
students, 1 general population 
which was also the only online 
sample. 

Several effects were experiments with two independent groups. The groups were either primed in 
some way (Power and perspective; warmth perceptions; subjective distance interaction), saw 
slightly different statements (Elaboration likelihood interaction; credentials interaction) or 
experienced different situations (weight embodiment). Examined interactions were between 
treatment conditions and participant characteristics. One priming effect (metaphor) compared two 
treatment groups with a control. One effect was correlational: ‘conscientiousness and persistence’ 
was measured by an unsolvable anagram task and self-report respectively. The Stroop task is a 
within-person experiment with two conditions and the ‘Availability’ effect asks participants to judge 
whether some letters are more common in the first or third position. 

RRR1 Alogna et al. 
(2014) 

10 32 (17) 1 4117 31/32 samples were 
undergraduate students aged 18-
25, 1 general population which 
was also the only online sample. 

Verbal overshadowing 1; Independent two-group experiment. Participants either described a 
robber after watching a video or listed countries/capitals and after a filler task attempted to identify 
the robber in a lineup. 

RRR2 Alogna et al. 
(2014) 

8 23 (14) 1 2442 22/23 samples were 
undergraduate students aged 18-
25, 1 general population which 
was also the only online sample. 

Verbal overshadowing 2; Different from 1 only in that the filler task took place before the 
descriptive task instead of after. 



Note. For studies with several effects the number of participants is the average across effects, rounded to the closest whole number. N = Participants 

used for primary analyses by original authors (i.e., after exclusions). RP = Replication Project, K (US) = no. primary studies (number of US studies), ML = 

Many Labs, RRR = Registered Replication Report. Code to reproduce table: osf.io/gtfjn

Table 2 continued      

RP Paper Countries K (US) Effects N Sample and Settings Description of Effects 

RRR3 Eerland et al. 
(2016) 

2 12 (10) 3 1187 11/12 samples were 
undergraduate students mostly 
aged 18-25, one of which was 
online. 1 sample was a broader 
online sample. 

Grammar’s effect on interpretation; Independent two-group vignette experiment with three 
outcome variables. Participants read about actions either described in imperfect or perfect tense 
and then rated protagonist's intentions (intentionality/intention attribution/detailed processing).. 

RRR4 Hagger et al. 
(2016) 

10 23 (7) 1 2872 All samples consisted of in-lab 
undergraduate students 

Ego depletion; Independent two-group experiment. Participants either assigned to a cognitively 
demanding task or a neutral, and performance was then measured in a subsequent cognitive task. 

RRR5 Cheung et al. 
(2016) 

5 16 (9) 2 2071 All samples consisted of in-lab 
undergraduate students aged 18-
25 

Commitment on neglect/exit; Independent two-group experiment with two outcome variables. 
Participants either primed to think about commitment to or independence from partner. 

RRR6 Wagenmakers et 
al. (2016) 

8 17 (8) 1 1894 All but one sample explicitly 
consisted of students and all took 
place in-lab. The last sample was 
recruited at university grounds. 

Facial feedback hypothesis; Independent two-group experiment. Participants either induced to 
‘smile’ or ‘pout’ by holding a pen in their mouth differently and simultaneously rated funniness of 
cartoons. 

RRR7 Bouwmeester et 
al. (2017) 

12 21 (5) 1 3596 All samples consisted of in-lab 
undergraduate students aged 18-
34. 

Intuitive cooperation; Independent two-group experiment. Economic game with money contribution 
to a common pool either under time pressure or time delay. 

RRR8 O’Donnell et al. 
(2017) 

13 23 (9) 1 4493 All samples consisted of in-lab 
undergraduate students aged 18-
25 

Professor priming; Independent two-group experiment. Participants primed with either a ‘professor’ 
or ‘hooligan’ stimuli. Outcome was percentage correct trivia answers. 

RRR9 McCarthy et 
al. (2018) 

13 22 (4) 2 5610 All samples consisted of in-lab 
students aged 18-25 

Hostility priming; Independent two-group experiment with two outcome variables. Participants 
descrambled sentences, either 20% or 80% were hostile, then rated an individual and a list of 
ambiguous behaviors on perceived hostility. 

RRR10 Verschuere et 
al. (2018) 

12 19 (4) 1 2294 All samples consisted of in-lab 
students aged 18-25 

Moral reminder; Independent two-group experiment. Participants either recalled the Ten 
Commandments or books they’d read. Outcome was degree of cheating when reporting results. 
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Method 

All code and data for this project are available on the Open Science Framework (OSF) 

at osf.io/4z3e7. We refer directly to relevant files on the OSF using brackets and links in the 

sections below. We ran all analyses using R version 3.4.3 (R Core Team, 2017). 

Data Collection 

For the purposes of this project (as described in the introduction) we collected meta-

analyses of only pre-registered direct replications in psychology. We defined a meta-analysis 

of “direct” replications as a meta-analysis of a set of studies with no differences in treatment 

or measurement variables. This type of multi-lab studies have only recently become popular 

in psychology, and as typically large collaborations on well-known and/or highly debated 

topics (see section ‘The pre-registered multi-lab projects’) each publication garners wide 

attention. We set out to include all such pre-registered multi-lab projects in psychology with 

published data. To decrease the risk of missing any published projects we made use of the 

webpage curatescience.org. Curatescience.org is a crowdsourced project to keep track of 

replications and transparency of research and so well-attuned to the purpose of finding 

replication studies with available data. In addition it includes a section with a “curated list of 

large scale replication efforts” which was intended to be “as comprehensive and inclusive as 

possible” (LeBel, personal communication, November 12, 2019). We included all multi-lab 

projects from this list. Originally, we included projects published before 2018-03-31, but 

updated our dataset in the process of revision with 3 additional projects that were published 

between 2018-03-31 and 2019-10-25, for a total of 13 projects containing 68 meta-analyses 

of primary effects. 

We downloaded and collated summary data from the thirteen pre-registered multi-lab 

replication projects in psychology (Table 2). Data from all thirteen projects were available on 

the Open Science Framework (osf.io) and downloaded between 2018/02/01 and 2019-10-25. 



 HETEROGENEITY IN DIRECT REPLICATIONS 17 

Although some projects (e.g. RRR4) reported results from several outcome variables, we 

only included primary outcome variables as explicitly stated in accompanying publications, 

resulting in a total of 68 meta-analyses. For each meta-analysis we extracted (osf.io/mcj5d) 

summary data (e.g., means and standard deviations) at the level of the lab as specified by 

the original authors for their primary analysis (i.e., typically after exclusions). We extracted 

information on the country of each lab, whether participants were physically in the lab for the 

study, total number of participants per lab, type of effect size, and additional information 

related to each meta-analysis (see codebook; osf.io/yn9fb). Extracted data were in a variety 

of formats: Excel (Many labs 1, RRR1 & RRR2), CSV (Many labs 3, RRR3, RRR4, RRR5, 

RRR6), and as PDF tables (RRR7). In three cases (RRR5, RRR6, and RRR9) it was 

necessary to download the raw data to extract summary data. In two cases (RRR8 and 

RRR10) there was summary data available as a CSV file, but without all the information we 

needed. For these, it was necessary to download the raw data and make minor code edits to 

extract the standard deviations. Although a particular lab may have participated in several 

projects, the lab indicator was typically not the same across projects. Even so, we kept the 

original lab indicators to facilitate comparing observations in our dataset with the original 

datasets. Finally, we collated the summary data for all meta-analyses into one dataset for 

analysis (osf.io/mcj5d) 

Heterogeneity Across Meta-analyses 

To examine heterogeneity of each of the 68 effects, we computed meta-analytic 

estimates for all 68 effects in our dataset (Table 3). In our primary analysis we ran all 

analyses as specified by the replication authors (osf.io/q9vwb). In contrast, since the 

replication authors sometimes transformed effect sizes (e.g., odds ratios to standardized 

mean differences; ML1) in our analysis of the association between heterogeneity and 

average effect size we did not always follow the replication authors specifications (see 

section “Association between effect size and heterogeneity”). Here we describe how effect 

sizes in Table 3 were estimated. The effect size of the original study, which was the focus of 
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the replication effort, was not included in these meta-analyses. All meta-analyses were 

estimated with random-effects models and the Restricted Maximum Likelihood (REML) 

estimator using the R-package metafor (Viechtbauer, 2010), though with a variety of 

outcome variables: product moment correlations (r), differences in correlations (Cohen’s q), 

standardized mean differences (SMD), raw mean differences (MD), and risk differences 

(RD). Many Labs 1 transformed effect sizes measured as odd ratios into standardized mean 

differences when meta-analyzing under the assumption that responses followed logistic 

distributions (Sánchez-Meca et al., 2003; Viechtbauer, 2010). Two projects (RRR5 and 

RRR7) used the Knapp and Hartung adjustment of the standard errors (Knapp & Hartung, 

2003) and Many Labs 3 correlations were corrected for bias (Hedges, 1989; Viechtbauer, 

2010). Many Labs 3 meta-analyzed (see osf.io/yhdau) several effects that were not originally 

measured as correlations (Availability, Metaphor; Stroop effect, Elaboration likelihood 

interaction, Subjective distance interaction, Credentials interaction) but were nonetheless 

transformed to and analyzed as product-moment correlations. It is not clear from the Many 

Labs 3 documents how they transformed the dichotomous (Availability, Metaphor) or within-

person (Stroop effect) outcomes to product-moment correlations and their standard errors. 

Interaction effect sizes appear to have been transformed from the original partial 𝜂2 by taking 

the square root. Many Labs 2 transformed all effect sizes, except two measured as Cohen’s 

q, into product-moment correlations for analysis by computing the non-central confidence 

intervals for each test statistic and then transforming these into product-moment correlations 

using the R-package “compute.es” (Hasselman, personal communication, October 14, 2019). 

In each meta-analysis we estimated 𝜏, I2 and their 95% confidence intervals. The R-

package metafor uses a general expression for I2 (equation 9 in Higgins & Thompson 2002) 

and estimates its confidence interval using the Q-profile method (Jackson, Turner, Rhodes, & 

Viechtbauer, 2014). We used this information together with our power analyses (described 

below) to examine the extent of heterogeneity across meta-analyses.  

Simulation of Type I Error Rate and Power.  
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In order to facilitate interpretation of our results, we estimated type I error and power of 

the Q-test of heterogeneity (Cochran, 1954) for each of the 68 meta-analyses under 

zero/small/medium/large heterogeneity (I2 = 0/25/50/75% respectively). In addition, we 

approximated the probability density function of I2 across meta-analyses at each of these four 

heterogeneity levels and compared them with the observed frequency distribution of the 

observed I2 (respectively �̂�) estimates of the 68 meta-analyses. Hence, five distributions of I2 

were obtained; four simulated and one observed. To do so we simulated results of I2 for each 

meta-analysis given its number of studies (K), sample sizes of those studies (vector 𝑁𝑘), and 

each of the four heterogeneity levels (osf.io/mw4aq). We directly simulated the distribution of 

I2 for correlation, Cohen’s q, standardized mean difference, and mean difference effect size 

measures, but not for risk differences. We treated risk differences as mean differences using 

the study sample sizes to compute study precision, because treating them as risk differences 

would require strong assumptions on the probability of success in both treatment groups, 

assumptions which would greatly affect the outcomes of the simulation. For the same reason 

we treated the four effects of Many Labs 1 which were measured as odds ratios (and then 

transformed into standardized mean differences) as standardized mean differences. Many 

labs 2 and Many Labs 3 effects which were reported as correlations were treated as such. 

As our concern was heterogeneity, for convenience we set the average true effect size 

to zero in our simulations of heterogeneity. This should not affect the results for correlations 

or mean differences, as estimates of effect size and heterogeneity for these measures are 

unrelated (i.e., changing the value of one estimate does not directly affect the formula and 

value of the other estimate). For standardized mean differences we expect negligible effects 

on the results, because while these estimates of effect size are positively correlated to their 

standard errors, the within-study variance 𝜎2 was kept constant across studies. As a 

sensitivity analysis we also ran all I2 analyses assuming 'medium' effect sizes (Cohen, 1988) 

and indeed found the same average power at the different heterogeneity levels, see 

Supplement B. 



 HETEROGENEITY IN DIRECT REPLICATIONS 20 

In case the observed effect size was a correlation, one run of a simulation proceeded 

as follows. First, we randomly sampled K true correlations 𝜌𝑖 from a normal distribution with 

mean 0 and heterogeneity (standard deviation) 𝜏. Second, for each of the K true correlations 

we sampled one Fisher-transformed (Fisher, 1915; 1921) observed correlation from a normal 

distribution with mean 𝜌𝑖 and variance 1/(𝑁𝑖 − 3). Finally, we fitted a random-effects meta-

analysis with REML and estimated I2 for that run. In the simulations, we varied the between-

studies standard deviation 𝜏 between 0.000 and 0.50 in increments of 0.005, and used 1,000 

runs at each step to approximate the distribution of I2 at that value for true heterogeneity. For 

Cohen’s q, we proceeded identically, except that variance was computed as 1/(𝑛𝑡 − 3) + 

1/(𝑛𝑐 − 3) where 𝑛𝑡 and 𝑛𝑐 were the observed treatment and control sample sizes for each 

study. 

For mean differences (and hence also for risk differences) we assumed a within-study 

variance of one for both treatment and control groups, 𝜎𝑐
2 = 𝜎𝑡

2 = 1. For each run we then set 

the population mean of the control condition to 0 and sampled K treatment population means 

𝜇𝑘 from 𝑁(0, 𝜏). Subsequently, K sample means for both control and treatment conditions 

were sampled, with 𝑥𝑐 ∼ 𝑁(0,1/√𝑛𝑐) and 𝑥𝑡 ∼ 𝑁(𝜇𝑘 , 1/√𝑛𝑡).. Group variances were sampled 

using 𝑠𝑐
2 ∼ 𝜒2(𝑛𝑐 − 1)/(𝑛𝑐 − 1) and 𝑠𝑡

2 ∼ 𝜒2(𝑛𝑡 − 1)/(𝑛𝑡 − 1). Finally, we fitted a random-

effects meta-analysis with REML and estimated I2 for that run. For standardized mean 

differences (and odds ratios) we proceeded identically, except that in the final step we asked 

metafor to transform the effect size into a standardized mean difference (Hedge’s g) in fitting 

the random-effects model. As with correlations, the distribution of I2 was approximated for 

values of 𝜏 from 0 to .5 in steps of .005, using 1,000 runs at each step. 

To approximate the statistical power of all 68 meta-analyses at zero, small, medium, 

and large heterogeneity we continued as follows. For each of the 68 meta-analyses we 

selected the values of 𝜏 which yielded the average value of I2 in the simulations closest to 

25% (small), 50% (medium), and 75% (large). For these values of 𝜏 and for 𝜏 = 0 

(homogeneity) we ran a simulation with 10,000 runs, and for each run I2 was calculated and 
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the Q-test of heterogeneity was performed, yielding estimates of type I error (in case of 

homogeneity) and power (for heterogeneity) for each of the 68 meta-analyses. We 

considered a result significant when p ≤ 0.05 for the Q-test. The distributions of I2 for zero, 

small, medium, large heterogeneity, which we compared to the observed distribution of 68 

effect sizes, was generated by pooling the 68 distributions of 10,000 I2 values in each 

category of heterogeneity. Hence these I2 distributions can be considered a mixture 

distribution of 68 distributions, using equal weights across all 68 meta-analyses. 

Association Between Effect Size and Heterogeneity 

 We examined the association between average (meta-analytic) effect size and �̂�, I2, 

and the closely related H2, for effect sizes on the log odds ratio metric (10 effects) and the 

standardized mean differences metric (Hedges g; 43 effects). We avoided transforming effect 

sizes for this analysis because transforming effect sizes will distort this association (see 

Supplement A). Hence we only used effect sizes that were originally measured as mean 

differences or binary outcomes with two groups (risk differences, odds ratios). There were 

too few product moment correlation effect sizes (4) and differences in correlations (2) to 

warrant estimating a correlation to these effect types. Many Labs 3 reported correlations, 

which they treated as product-moment correlations, as summary statistics for several effects 

(Availability, Metaphor; Stroop effect; interactions), which were not originally measured in this 

metric. These effect sizes were excluded from the analysis, as were three effects from Many 

Labs 2 for the same reason (Choosing or Rejecting; Direction & Similarity; Actions are 

Choices). The four effects (Allowed vs. forbidden, Gain vs. loss framing, Norm of reciprocity, 

Low vs. high category scales) that were transformed by Many Labs 1 into standardized mean 

differences we computed as (log) odds ratios.  

In our analyses we computed the association of estimates of average effect size with 

three different heterogeneity estimates: �̂�, I2 and the closely related H2 (Higgins & Thompson, 

2002). All estimates were obtained with the REML estimator in metafor. We added the H2 

index as a robustness check to avoid the truncation at zero of the I2 index when computing 
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correlations between estimates of effect size and effect size heterogeneity. However, to 

avoid truncation we had to compute H2 as H2 = Q / (k – 1). This expression of H2 is strictly 

only correct when using the DerSimonian-Laird estimator of �̂�, and readers should be aware 

of this when interpreting the results of H2. To describe the association between average 

effect size and heterogeneity due to variation in sample population and settings, we report 

both Pearson’s product moment correlations and, as the association may be nonlinear, 

Spearman’s rank order correlations. For these statistics we also report 95% bootstrap 

confidence intervals using the percentile method (osf.io/u2t3r). 

Results 

Table 3 presents the meta-analytic effect size estimates of 𝜏 and I2 with confidence intervals 

for each of the 68 included effects, as well as simulated type I error and statistical power for 

zero, small, medium, and large true heterogeneity (defined in terms of I2 = 0/25/50/75%, 

respectively).  
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Table 3. 

Heterogeneity across primary effects and statistical power of thirteen multi-lab replication projects, ordered with respect to estimated heterogeneity 

        
 Type I Error Rate & Statistical 

Power 

         Level of heterogeneity 

RP Effect K 

Effect 
type 

Effect size 
estimate I2 (%) I2  95% CI �̂� �̂� 95% CI Zero Small Medium Large 

ML2 Intentional Side-Effects* 59 r 0.67 93.47 [91.66, 96.51] 0.148 [0.129, 0.205] 0.05 0.48 0.98 1.00 

ML1 Anchoring 3 – Everest* 36 SMD 2.41 91.29 [86.61, 95.23] 0.693 [0.544, 0.956] 0.05 0.42 0.92 1.00 

ML2 Direction & SES 64 r 0.20 88.77 [84.14, 92.15] 0.247 [0.202, 0.301] 0.05 0.53 0.99 1.00 

ML1 Allowed vs. forbidden† 36 SMD 1.93 75.56 [60.32, 85.46] 0.496 [0.348, 0.685] 0.05b 0.46b 0.92b 1.00b 

ML1 Anchoring 2 – Chicago* 36 SMD 2.00 75.36 [61.11, 87.15] 0.358 [0.257, 0.533] 0.04 0.40 0.92 1.00 

ML2 Moral Typecasting* 60 r 0.45 72.94 [61.69, 82.76] 0.110 [0.085, 0.147] 0.05 0.58 0.98 1.00 

ML2 Intuitive Reasoning* 57 r 0.40 66.48 [54.38, 80.87] 0.103 [0.080, 0.150] 0.05 0.54 0.98 1.00 

ML2 Less is Better* 57 r 0.39 64.74 [48.82, 76.96] 0.099 [0.071, 0.133] 0.05 0.57 0.97 1.00 

ML2 Moral Foundations 60 r 0.13 64.74 [49.11, 75.70] 0.091 [0.066, 0.118] 0.05 0.55 0.98 1.00 

ML2 Correspondence Bias* 58 r 0.69 64.69 [46.20, 73.07] 0.064 [0.044, 0.078] 0.05 0.57 0.98 1.00 

ML1 Anchoring 4 – Babies* 36 SMD 2.53 64.67 [45.67, 83.33] 0.298 [0.202, 0.492] 0.05 0.42 0.91 1.00 

ML2 Actions are Choices 57 r -0.11 63.90 [46.77, 75.97] 0.061 [0.043, 0.081] 0.05 0.52 0.98 1.00 

ML2 Trolley Dilemma 1† 59 r 0.59 54.07 [31.83, 66.16] 0.080 [0.050, 0.102] 0.05 0.54 0.99 1.00 

ML1 Quote Attribution* 36 SMD 0.31 52.05 [24.63, 76.25] 0.164 [0.090, 0.282] 0.05 0.45 0.91 1.00 

ML2 Social Value Orientation 54 r 0.03 50.22 [28.21, 67.88] 0.069 [0.043, 0.100] 0.05 0.52 0.98 1.00 

ML2 False Consensus 2* 58 r 0.41 43.15 [18.07, 62.64] 0.063 [0.034, 0.093] 0.05 0.58 0.98 1.00 

ML1 Anchoring 1 – NYC* 36 SMD 1.21 40.23 [10.62, 73.94] 0.152 [0.064, 0.311] 0.05 0.44 0.91 1.00 

ML1 IAT correlation math 35 r 0.39 40.05 [3.93, 64.97] 0.056 [0.014, 0.094] 0.05 0.40 0.92 1.00 

RRR3 Grammar on intentionality* 12 MD -0.25 38.06 [0.00, 85.72] 0.227 [0.000, 0.708] 0.06 0.26 0.68 0.96 

ML2 Priming Warmth* 47 r -0.01 36.76 [8.16, 62.73] 0.082 [0.032, 0.140] 0.05 0.51 0.97 1.00 

ML2 Tempting Fate* 59 r 0.11 36.49 [5.91, 53.57] 0.065 [0.021, 0.091] 0.05 0.58 0.98 1.00 

ML3 Subjective Distance interaction 21 r 0.02 33.51 [0.00, 76.78] 0.059 [0.000, 0.151] 0.05 0.28 0.83 0.99 

ML1 Gender math attitude* 35 SMD 0.57 28.06 [0.00, 67.34] 0.112 [0.000, 0.258] 0.05 0.41 0.91 1.00 

ML2 Choosing or Rejecting 41 r -0.06 26.49 [0.00, 52.42] 0.047 [0.000, 0.083] 0.06 0.46 0.94 1.00 
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Table 3 continued            

RP Effect K 
Effect 
type 

Effect size 
estimate I2 (%) I2  95% CI �̂� �̂� 95% CI Zero Small Medium Large 

ML2 Incidental Anchors* 49 r 0.03 24.94 [0.00, 54.71] 0.056 [0.000, 0.107] 0.05 0.49 0.97 1.00 

ML3 Credentials interaction 21 r 0.02 24.03 [0.00, 73.82] 0.046 [0.000, 0.137] 0.05 0.30 0.80 1.00 

ML1 Gambler’s Fallacy* 36 SMD 0.61 22.85 [0.00, 69.16] 0.090 [0.000, 0.248] 0.05 0.41 0.90 1.00 

ML2 Moral Cleansing* 52 r 0.01 22.29 [0.00, 51.55] 0.047 [0.000, 0.090] 0.05 0.53 0.98 1.00 

ML1 Imagined Contact* 36 SMD 0.12 20.60 [0.00, 62.50] 0.080 [0.000, 0.202] 0.05 0.44 0.91 1.00 

ML1 Low vs. high category scales† 36 SMD 0.88 19.20 [0.00, 49.95] 0.155 [0.000, 0.318] 0.05b 0.44b 0.92b 1.00b 

RRR9 Hostility priming – Behavior* 22 MD -0.08 18.03 [0.00, 56.25] 0.096 [0.000, 0.233] 0.05 0.34 0.82 1.00 

RRR9 Hostility priming – Hostility* 22 MD 0.08 17.73 [0.00, 59.61] 0.079 [0.000, 0.207] 0.05 0.30 0.81 1.00 

RRR8 Professor priming* 23 MD 0.14 17.43 [0.00, 64.79] 0.857 [0.000, 2.538] 0.06 0.33 0.82 1.00 

ML1 Norm of reciprocity† 36 SMD -0.36 17.21 [0.00, 47.51] 0.091 [0.000, 0.190] 0.05b 0.44b 0.91b 1.00b 

ML2 False Consensus 1* 59 r 0.48 15.88 [0.00, 40.52] 0.032 [0.000, 0.061] 0.05 0.57 0.98 1.00 

ML2 Assimilation & Contrast 59 q -0.07 15.12 [0.00, 33.35] 0.078 [0.000, 0.131] 0.05 0.52 0.98 1.00 

ML3 Metaphor 20 r 0.14 13.03 [0.00, 57.02] 0.047 [0.000, 0.141] 0.06 0.31 0.81 0.99 

RRR1 Verbal overshadowing 1† 32 RD -0.03 12.23 [0.00, 46.51] 0.032 [0.000, 0.081] 0.05b 0.34b 0.82b 0.99b 

ML2 Priming Consumerism* 54 r 0.07 11.97 [0.00, 49.10] 0.035 [0.000, 0.093] 0.05 0.54 0.97 1.00 

ML2 Trolley Dilemma 2† 60 r 0.13 11.90 [0.00, 33.23] 0.036 [0.000, 0.069] 0.05 0.57 0.98 1.00 

ML1 Sunk Costs* 36 SMD 0.29 9.18 [0.00, 45.93] 0.050 [0.000, 0.145] 0.05 0.44 0.93 1.00 

ML2 Framing† 55 r 0.22 5.92 [0.00, 36.47] 0.025 [0.000, 0.075] 0.06 0.55 0.98 1.00 

ML2 Position & Power 59 r 0.01 3.09 [0.00, 42.19] 0.016 [0.000, 0.074] 0.05 0.58 0.98 1.00 

ML2 Disgust & Homophobia 59 q 0.04 3.05 [0.00, 30.32] 0.035 [0.000, 0.131] 0.05 0.54 0.98 1.00 

RRR7 Intuitive-cooperation* 21 MD -0.39 2.80 [0.00, 39.28] 0.911 [0.000, 4.321] 0.06 0.32 0.81 1.00 

ML2 SMS & Well-Being 59 r -0.01 1.84 [0.00, 29.80] 0.013 [0.000, 0.063] 0.05 0.55 0.98 1.00 

ML3 Availability 21 r 0.04 0.51 [0.00, 56.09] 0.006 [0.000, 0.095] 0.05 0.33 0.82 1.00 

ML2 Incidental Disfluency* 66 r -0.02 0.01 [0.00, 27.41] 0.001 [0.000, 0.061] 0.05 0.56 0.99 1.00 

ML1 Gain vs. loss framing† 36 SMD -0.66 0.01 [0.00, 55.57] 0.002 [0.000, 0.205] 0.05b 0.44b 0.91b 1.00b 

ML3 Power and Perspective* 21 SMD 0.03 0.01 [0.00, 57.17] 0.002 [0.000, 0.198] 0.05 0.32 0.82 1.00 

RRR3 Grammar on intention attribution* 12 MD 0.00 0.00a [0.00, 70.62] 0.001 [0.000, 0.185] 0.06 0.24 0.66 0.97 

ML3 Conscientiousness and 
persistence 

21 r 0.02 0.00a [0.00, 61.42] 0.000a [0.000, 0.104] 0.05 0.35 0.80 1.00 
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Table 3 continued            

RP Effect K 
Effect 
type 

Effect size 
estimate I2 (%) I2  95% CI �̂� �̂� 95% CI Zero Small Medium Large 

RRR3 Grammar on detailed processing* 12 MD -0.10 0.00 [0.00, 54.49] 0.000 [0.000, 0.246] 0.06 0.21 0.68 0.97 

RRR5 Commitment on neglect* 16 MD -0.05 0.00 [0.00, 53.18] 0.000 [0.000, 0.208] 0.06 0.28 0.75 0.99 

ML3 Warmth Perceptions* 21 SMD 0.01 0.00 [0.00, 47.10] 0.000 [0.000, 0.158] 0.06 0.39 0.91 1.00 

RRR4 Ego depletion* 23 SMD 0.00 0.00 [0.00, 46.91] 0.000 [0.000, 0.169] 0.05 0.33 0.84 1.00 

RRR10 Moral reminder* 19 MD 0.11 0.00 [0.00, 44.13] 0.000 [0.000, 0.392] 0.06 0.31 0.79 0.99 

ML1 Flag Priming* 36 SMD 0.02 0.00 [0.00, 36.23] 0.000 [0.000, 0.118] 0.05 0.43 0.92 1.00 

ML1 Money Priming* 36 SMD -0.02 0.00 [0.00, 33.18] 0.000 [0.000, 0.110] 0.05 0.48 0.92 1.00 

RRR2 Verbal overshadowing 2† 23 RD -0.15 0.00 [0.00, 32.36] 0.000 [0.000, 0.065] 0.05b 0.31b 0.82b 0.99b 

ML3 Weight Embodiment* 20 SMD 0.03 0.00 [0.00, 29.97] 0.000 [0.000, 0.122] 0.06 0.34 0.83 1.00 

RRR6 Facial Feedback hypothesis* 17 MD 0.03 0.00 [0.00, 25.13] 0.000 [0.000, 0.164] 0.06 0.27 0.79 0.99 

ML2 Affect & Risk 60 r -0.04 0.00 [0.00, 21.08] 0.000 [0.000, 0.056] 0.05 0.57 0.99 1.00 

ML3 Elaboration likelihood interaction 20 r 0.00 0.00 [0.00, 18.62] 0.000 [0.000, 0.042] 0.05 0.31 0.79 1.00 

RRR5 Commitment on exit* 16 MD -0.06 0.00 [0.00, 17.44] 0.000 [0.000, 0.089] 0.06 0.29 0.74 0.99 

ML3 Stroop effect 21 r 0.41 0.00 [0.00, 13.61] 0.000 [0.000, 0.027] 0.05 0.30 0.80 1.00 

ML2 Structure & Goal Pursuit 52 r -0.01 0.00 [0.00, 1.91] 0.000 [0.000, 0.013] 0.05 0.53 0.97 1.00 

ML2 Direction & Similarity 49 r 0.01 0.00 [0.00, 0.00] 0.000 [0.000, 0.000] 0.05 0.54 0.97 1.00 

Note. Effects were estimated in metafor using REML. The following effects are odds ratios transformed into standardized mean differences: ‘Allowed vs. forbidden’, ‘Gain vs. loss 

framing’, ‘Norm of reciprocity’, ‘Low vs. high category scales’. All ML2 meta-analyses with effect type 'r' except 'Moral foundations' and 'Social Value Orientation' were transformed 

to correlations from a variety of effect sizes. RP = Replication Project, K = no. primary studies, �̂� = between studies standard deviation of effect size, CI = confidence intervals. 

Statistical power was simulated, where Zero = simulated type 1 error, and the other headers represent simulated power under small/medium/large heterogeneity (𝐼2 = 25/50/75%) 

respectively. ML = Many Labs, RRR = Registered Replication Report, SMD = Standardized Mean difference (Hedge’s g), MD = Mean Difference, RD = Risk Difference, r = 

correlation, q = Cohen’s q. Code to reproduce table: osf.io/gtfjn 

a Value rounded down to zero, b Odds ratio or risk difference simulated as (standardized) mean difference, * SMD effect size in Figure 3, † Log odds ratio effect size in Figure 
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There is limited evidence for widespread heterogeneity across the examined effects. 

Rounding I2 estimates to their closest value of 0/25/50/75% and under the specifications of 

the original authors 12/68 (18%) meta-analyses have I2 estimates that best correspond to 

large heterogeneity (I2 = 75%), 7/68 (10%) to medium heterogeneity (I2 = 50%), 18/68 (26%) 

to small heterogeneity (I2 = 25%) and 31/68 (46%) to zero heterogeneity (I2 = 0%). The 

between studies standard deviation estimates (�̂�) shows a similar pattern, although 

interpretation is more difficult due to the differences in scale and lack of guidelines. For the 

two largest groups of effect size measures (correlations and SMDs) the largest �̂� is .25 and 

0.69, respectively, and their quartiles .014/.047/.068 and <0.001/0.090/0.160.  The 48 meta-

analyses that had confidence intervals of I2 containing 0 (71%), also had confidence intervals 

of �̂� that contained 0. Moreover, the sixteen (24%) meta-analyses with estimated I2 = 0 also 

had �̂� = 0 (note: two meta-analyses had I2< .005 and were rounded down when printed in 

Table 3, and one of these also had a �̂� < .0005 which was rounded down, see table footnote). 

The percentage of heterogeneity estimates larger than 0 (52/68; 76%) suggests 

heterogeneity for at least some meta-analyses, as this percentage is higher than the 

expected frequency of non-zero estimates under homogeneity (47%, or about 32/68), based 

on the chi-square distribution and average K (29) across projects. Hence our results on the 

assessment of heterogeneity are essentially the same using I2 or �̂�. 

 

Figure 1 shows how estimated I2 varies across all 68 meta-analyses as a function of 

true heterogeneity (averaged across all simulation runs). Figure 1 makes clear that I2 is 

particularly sensitive to changes in heterogeneity for small heterogeneity, and that estimates 

of I2 may differ considerably across projects for the same value of true heterogeneity. This 

can largely be attributed to differences in the sample sizes of the studies incorporated in a 

Heterogeneity Estimates and Confidence Intervals 

I2 and Power 
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meta-analyses (with larger sample sizes resulting in larger estimates of I2). For example, the 

cluster of lines at the bottom all belong to RRR3, the replication project with the lowest 

average sample size per study (99; see Table 2). This illustrates why only relying on I2 can 

be problematic, and why also reporting �̂� is recommended, despite the fact that the between 

studies standard deviation (𝜏) is not measured on the same scale across different effect size 

measures and estimates are not directly comparable across effect types. 

 

Figure 1. Result of simulation relating I2-values to between studies standard deviation. 

Each line represent one of 68 effects. Tau (𝜏) is not directly comparable across effect size 

measures. MD = Mean Difference, SMD = Standardized Mean Difference. Code to 

reproduce figure: osf.io/u2t3r
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Estimated type I error and power for zero/small/medium/large heterogeneity as defined 

by Higgins (2003) are shown for each meta-analysis in Table 3. In all cases the type I error is 

approximately nominal, as compared to the expected 5% error rate. Power to detect small 

heterogeneity was low, ranging from 21% to 58%, with an average of 43%. Power to detect 

medium heterogeneity was generally very good, with an average of 90% power, but goes 

down to as low as 66 - 68% for several meta-analyses with low K (i.e., meta-analyses from 

RRR3). Power to detect strong heterogeneity was excellent across the board. To conclude, 

even though for most projects the number of included studies (median 22) and number of 

participants (median 96 per study) was relatively large, only power to detect medium or 

larger heterogeneity was good to excellent, whereas power to detect small heterogeneity 

was unacceptably low. Hence, even large multi-lab projects struggle to distinguish zero from 

small heterogeneity when defined as I2 = 0 vs. 25%. 

Figure 2 shows the distribution of I2 at different heterogeneity levels and the distribution 

of the observed I2 estimates (bars) using original model and effect size specifications (as 

detailed in the methods section). The shortest bars in the observed distribution correspond to 

a frequency of one heterogeneity estimate. The considerable overlap of the theoretical 

(simulated) probability density functions illustrate that it will be particularly difficult to 

distinguish zero heterogeneity (i.e., homogeneity) from small heterogeneity (here, I2 = 25%), 

and  why confidence intervals for I2 are often wide. Given the distribution of observed I2 

estimates in Table 3 and Figure 2, the majority of observed I2 estimates are most likely to 

have zero or zero to small heterogeneity. For I2 only for twelve meta-analyses there seems to 

be substantial evidence that they originate from medium or large true effect size 

heterogeneity, as they fall outside the densities of zero and small true effect size 

heterogeneity.  
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Figure 2. Simulated I2 densities across 68 meta-analyses for zero, small, medium, and 

large heterogeneity according to the definitions of Higgins (2003), and the distribution of the 

observed I2 estimates (bars) for the 68 meta-analyses. Each simulated density consists of 

approximately 680,000 estimates. Code to reproduce figure: osf.io/u2t3r
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Larger estimated effect sizes appear to be associated with higher heterogeneity 

estimates. Our data show a strong correlation between absolute effect size and 

heterogeneity due to changes in sample population and settings (standardized mean 

differences and log odds ratios; Figure 3). Amongst the 43 meta-analyses based on 

standardized mean differences (lower graphs in panels A, B, and C in Figure 3), Pearson’s 

correlations varied from .66 to .79 depending on the measure of heterogeneity (𝑟�̂� (41) = .77, 

p < .001, bootstrap 95% CI [.57, .91]; 𝑟𝐼2 (41)= .79, p < .001, bootstrap 95% CI [.63, .90];  𝑟𝐻2 

(41) = .66, p < .001, 95% bootstrap CI [.37, .88). Results are similar for the 10 meta-analyses 

which could be computed as (log) odds ratios (upper graph in panels A, B, and C in Figure 

3), although the lower number of effect sizes lead to  less precision than for standardized 

mean differences as can be seen in the wider confidence intervals (𝑟�̂� (8) = .91, bootstrap 

95% CI [-.02, .98]; 𝑟𝐼2 (8) = .90, bootstrap 95% CI [-.03, .98]; 𝑟𝐻2 (8) = .85, bootstrap 95% CI 

[.17, .98]). Excluding Anchoring effects (the 1st, 3rd, 4th, and 6th largest effect sizes amongst 

average standardized mean differences) as robustness check results in only slightly lower 

Pearson’s correlations between average standardized mean difference effect size and 

estimated heterogeneity (𝑟�̂� (37) = .74, p < .001, bootstrap 95% CI [.48, .92]; 𝑟𝐼2 (37) = .73, p 

< .001, bootstrap 95% CI [.52, .90]; 𝑟𝐻2 (37) = .64 p < .001, bootstrap 95% CI [.27, .91]). Also 

Spearman’s rank-order correlation across all average SMDs resulted in similar correlations 

(𝑟�̂�= .79, p < .001, bootstrap 95% CI [.62, .88]; 𝑟𝐼2= .79, p < .001, bootstrap 95% CI [.61, 

.88]; 𝑟𝐻2= .75, p < .001, bootstrap 95% CI [.55, .85]).  

Finally, amongst the 22 standardized mean differences with average (meta-analytic) 

effect size not significantly different from zero (given alpha = 0.05), the average estimate of 

heterogeneity was  �̂� = 0.018, with 14/22 estimates exactly equal to zero (average 𝐼2 = 

3.80% and average 𝐻2 = 0.90). These results are in line with zero true heterogeneity for all 

meta-analyses in this subset, corroborating the proposition that heterogeneity is not to be 

Heterogeneity and Effect Sizes 
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expected when average effect size is zero. There was only a single log odds ratio with an 

average effect size not significantly different from zero (Verbal overshadowing 1, p = .060, �̂� 

= 0.132, 𝐼2 = 11.81, 𝐻2 = 1.05).  

 

Figure 3. The Pearson correlation between absolute effect size and A) τ̂, B) I2, and C) 

H2 respectively for 43 effects that were measured as mean or standardized mean differences 

and 10 effects measured as odds ratios or risk differences from 13 pre-registered multi-lab 

replication projects. Effects reported as mean differences were standardized and odds 

ratios/risk differences computed as log odds ratios. r = product-moment correlation, square 
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brackets contain 95% bootstrapped percentile confidence intervals. Code to reproduce 

figure: osf.io/u2t3r 

Discussion 

We examined the evidence for widespread sensitivity of effect sizes to minor changes 

in sample population and settings (heterogeneity) in social and cognitive psychology and the 

correlation between average effect size and this heterogeneity, in a sample of thirteen pre-

registered multi-lab direct replication projects in psychology. These thirteen projects 

examined a total of 68 primary outcome variables and arguably represent the best meta-

analytic data currently available in psychology. To aid interpretation we also estimated power 

of each project to find zero/small/medium/large heterogeneity as defined by Higgins (2003) 

and approximated the distributions of I2 under these four heterogeneity levels. Our results 

showed that most meta-analyses in our sample likely had zero to small heterogeneity, that 

power to distinguish between zero and small heterogeneity was low for all projects, and that 

heterogeneity due to changes in sample population and settings was strongly correlated with 

effect size for standardized mean differences and (log) odds ratios. 

In addition to most effects showing no or small heterogeneity, some effects that 

showed evidence for medium to large heterogeneity were effects that might have been 

expected to be sensitive to changes in sampling population. That is, most replication projects 

included a large number of US labs (see Table 2) and some effects that demonstrated 

heterogeneity used designs where a heterogeneous US-related response would be 

unsurprising, also within the US. : They either asked questions about the US (anchoring 

effects), persons related to the US (Quote attribution) or issues that are well-known to 

generate strong debate in the US (i.e., free speech; allowed vs. forbidden). For instance, 

someone living close to Chicago is more likely to know the population of Chicago, thereby 

likely generating heterogeneity in the anchoring effect concerning the population size of 
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Chicago. We must note, however, that this observation is based on our ad hoc reasoning, 

and exploratory analyses. 

Implications 

Our finding that heterogeneity appears to be generally small or non-existent is an 

argument against so called 'hidden moderators', or unexpected contextual sensitivity. Indeed, 

our results imply that effects cannot simply be assumed to vary extensively "across time, 

situations and persons" (Iso-Ahola, 2017, p. 14) and that we should not expect "minor, 

seemingly arbitrary and even theoretically irrelevant modifications in procedures" (Coyne, 

2016, p. 6) to have large impact on effect size estimates. That is, our results suggest that 

minor changes to sample population and settings are unlikely to affect research outcomes in 

social and cognitive psychology.  

Nonetheless, a few cases in our sample had large heterogeneity estimates. There was 

no clear pattern in experimental design (as described in Table 2) to indicate when to expect 

minimal or large heterogeneity. For example, amongst priming effects (the largest subgroup, 

23/68 experimental designs) there were both effects with large heterogeneity estimates 

(Anchoring 1 – 4) and zero (e.g., Structure & Goal Pursuit, Commitment on exit). The same 

was true when participants were asked to imagine slightly different situations (14/68 

experimental designs) where ‘Intentional Side-Effects’ had the largest heterogeneity estimate 

(I2) of all meta-analyses, yet several meta-analyses had zero estimates (e.g., Elaboration 

likelihood interaction, Affect & Risk).  

What heterogeneity to expect due to minor changes to sample settings and population 

seems more dependent on the particular effect rather than on research design features. 

Researchers should thus carefully consider whether their particular topic is susceptible to 

changes in context (as also recommend by Simons et al., 2017). For example, a researcher 

working with anchoring effects might wish to carefully consider minor changes to sample 

settings and population as heterogeneity for these effects was large, whereas this appears 
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less important for someone researching the Stroop effect. When information on 

heterogeneity for a particular effect is lacking (i.e., Table 3 only presents results for 68 

effects) the appropriate default expectation seems to be that there will be no or very little 

heterogeneity due to minor changes in sample settings and population, given that this is what 

we found amongst most effects in our sample, particularly for zero effect sizes. In general, 

we believe the evidence presented in Table 3 can be useful for researchers seeking to 

understand why certain research results do or do not replicate. The exact implications for 

replicability under different frameworks for defining replication await exploration in future 

work. We cannot and do not generalize our conclusions to conceptual replications, as these 

studies may vary from original studies in aspects that are expected to yield different effect 

sizes, anticipated by theory.  

In view of the fact that most effects in our sample likely had zero to small 

heterogeneity, the lack of power to distinguish between these two heterogeneity levels is of 

concern. That heterogeneity is small is not the same as being negligible, as even small 

heterogeneity may have consequences for implementing interventions, the advancement of 

theory, and the interpretation of research outcomes including replication studies. A 

suggestion to double the already very impressive number of participating labs and individuals 

of the largest replication projects in our sample seems unrealistic. However, initiatives like 

the Psychological Science Accelerator, which is a globally distributed network of over 500 

psychology laboratories, now allow for more powerful multi-lab projects than those reported 

in this paper (Moshontz et al., 2018). Regardless, the good news is that sufficient power to 

detect medium and large heterogeneity is realistically achievable for many large multi-lab 

replication projects.  As these projects’ designs and methods are usually carefully controlled, 

we conclude that large (preferably preregistered) multi-lab studies are very valuable for 

increasing understanding of psychological phenomena. . 

Heterogeneity amongst the studied effects was positively associated with effect size for 

standardized mean differences and (log) odds ratios. For both standardized mean 
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differences and log odds ratios the correlation was similarly strong (ranging from .66 - .91 

across heterogeneity and effect size measures). There are thus both theoretical reasons, 

related to the measurement reliability of estimates, and empirical reasons to expect larger 

effect sizes to exhibit comparatively more heterogeneity when using observed effect sizes in 

a meta-analysis.  

For our own sample of meta-analyses, however, we have no evidence that the 

association between heterogeneity and effect size is (at least partly) explained by differences 

in measurement reliability amongst labs. Measurement reliabilities were not reported by the 

projects we examined, and downloading, cleaning and computing them from the raw data is 

outside of the scope of this paper. However, , the strong similarity of research materials 

across replication studies does imply smaller differences in measurement reliability than 

typically found in ‘regular’ meta-analyses in psychology, as these regular meta-analyses 

include studies with different measurements of the variables involved. We therefore 

hypothesize that differential measurement reliabilities across studies in the same meta-

analysis may at least partially explain why heterogeneity in meta-analysis in psychology is 

typically larger than those found in multi-lab replication studies. For applied meta-analysts, 

differential measurement error is thus yet another potential explanation for observed 

heterogeneity. However, we want to stress that correcting for measurement error when 

estimating effect size is not an easy fix to the problem of accurately estimating heterogeneity 

of effect sizes; as both effect size and estimates of reliability are imprecise (i.e., subject to 

sampling error), attempting to correct for measurement error may also introduce 

heterogeneity, rather than reduce it.  

The positive association between estimates of average effect size and heterogeneity 

cannot be a statistical artefact resulting from labs with small samples sizes examining large 

true effect sizes (e.g., because of a priori power analyses). Adequate a priori power analyses 

would imply a negative (spurious) association between estimates of effect size and 
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heterogeneity, which is the opposite of what we found. We expand on this argument in 

Supplement C. 

Our correlational results also suggest that if there is a null overall (meta-analytic) effect 

size, then it is likely the effect does not exist in any sample population or setting. This is 

suggested by our finding of no evidence of heterogeneity in the subset of 22 standardized 

mean differences with an average (meta-analytic) effect size that was not significantly 

different from zero. However, we advise caution with generalizing this implication. This 

implication holds for direct replications only, and may not hold for conceptual replications that 

differ more on sample population and setting (or that differ in a different way than our subset 

of meta-analyzed studies; see Table 2), or along other dimensions (treatment and 

measurement variables). Strictly speaking, it is also possible that the effect exists only in a 

particular subset of the population (e.g., elderly with low education), although we do not 

believe this is a priori likely as an average non-zero effect size would be expected in such a 

case. Another important caution is that an average effect size may not be (significantly) 

different from zero because of a lack of statistical power. This is not an issue for the multi-lab 

projects included in our paper, as their typical statistical power exceeds 0.99 to detect a 

small true effect size (i.e., Hedges g = 0.20), due to very large sample sizes.  

 Finally, our analysis reported in Supplement A demonstrates that transforming effect 

sizes to another metric may generally be inadvisable since the monotonicity principle can be 

violated (that is, the order of heterogeneity estimates of different meta-analyses may change 

due to the transformation). In view of this finding researchers may wish to carefully consider 

whether combining or transforming effect sizes from different effect size metrics in a meta-

analysis is advisable. 

Limitations and Future Research Directions 

There are some limits to the generalizability of claims based on the data in our study. 

Primarily, the included effects are neither a representative nor random sample of effects in 
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psychology and as such do not support making strong claims about average heterogeneity 

levels in psychology. We would consider most of the effects described in Table 2 to belong to 

social and cognitive psychology (and Many Labs 2 explicitly selected effects from these 

domains). Although these are large subfields in psychology, the lack of effects from other 

disciplines means our results may not generalize to disciplines such as developmental, 

clinical or educational psychology. Relatedly, at least the Many Labs studies (which 

examined many effects in a single session) selected effects partly based on their brevity, and 

hence we cannot exclude the possibility that our conclusions may be more applicable to 

these kinds of effects. In addition, we only considered meta-analyses that varied two 

contextual factors (sample population and settings) that may cause heterogeneity, keeping 

constant two other ones (treatment and measurement variables), which may have resulted in 

both lower heterogeneity estimates as well as a stronger relationship between effect size and 

heterogeneity estimates in our paper. 

Moreover, our results may depend on the type of variation in sample population and 

settings across labs. Most samples consisted of college undergraduates and took place in a 

lab or online (Table 2) and it may be that there would be more variation across studies when 

using for example children or an organizational setting. In connection to this, it is possible 

that our use of a single webpage (curatescience.org) has led us to miss some multi-lab direct 

replication projects, although we believe it unlikely that we have missed many (if any) multi-

lab direct replication projects, due to their relatively recent popularity and highly publicized 

nature. Although we are confident to have included the vast majority of relevant projects 

currently published, the relatively small number of meta-analyses in our sample means the 

association between heterogeneity and effect size might be an artifact of the data. However, 

the exclusion of the rather extreme anchoring effects from our analysis only slightly reduced 

the correlation between effect size and heterogeneity. We also found similar results across 

two different effect size measures, although the low number of meta-analyses with log odds 

ratios (10) meant confidence intervals for that measure were wide.  Relatedly, we should 
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stress that while our results point towards most meta-analyses having zero to small 

heterogeneity, many confidence intervals are very wide and congruent with a large range of 

actual heterogeneity. 

Our results and the limitations of our data provide some guidance in directions of future 

research. The 68 meta-analyses studied here suggest that zero to small heterogeneity is the 

standard for direct replications in social and cognitive psychology, but it would still be 

desirable to examine heterogeneity in a larger sample of meta-analyses of direct replications. 

We are enthusiastic about the possibilities to do so in the near future, thanks to the many 

ongoing multi-lab initiatives in psychology (Registered Replication Reports, ManyBabies, the 

Psychological Science Accelerator). Relatedly, a larger sample of meta-analyses would 

enable testing whether the correlation between heterogeneity and effect size is generally as 

strong as what we found in our sample of standardized mean differences. Ideally there would 

be a continually updating analysis of heterogeneity and the association between 

heterogeneity, given the many multi-lab projects in psychology likely to be published in the 

next few years.  Moreover, the spread of the multi-lab format to disciplines other than social 

and cognitive psychology (e.g., ManyBabies; developmental psychology) will enable 

researchers to examine whether our conclusions also apply to direct replications in other 

fields of psychology, and for direct replications varying other aspects of sample population 

and settings than those varied here, and/or other contextual factors. Finally, it may be 

worthwhile to attempt to disentangle the contribution of reliability to the correlation between 

heterogeneity and effect size from other aspects of measurement that are likely to contribute, 

such as range restrictions (Schmidt & Hunter, 2015). 

Conclusions 

To conclude, in the arguably best meta-analytic data currently available in psychology, 

most effects likely had zero to small heterogeneity arising from minor variation in sample 

population and settings, and this heterogeneity was strongly correlated with effect size for 

standardized mean differences and (log) odds ratios. Despite a relatively large number of 
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studies and participants in each meta-analysis, power was too low to distinguish between 

zero and small heterogeneity in all cases. Our results suggest that minor changes to sample 

population and settings are unlikely to affect research outcomes in social and cognitive 

psychology. 
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