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ABSTRACT10

Researcher degrees of freedom refer to arbitrary decisions in the execution and reporting of hypothesis-
testing research that allow for many possible outcomes from a single study. Selective reporting of results
(p-hacking) from this ‘multiverse’ of outcomes can inflate effect size estimates and false positive rates. We
studied the effects of researcher degrees of freedom and selective reporting using empirical data from
extensive multi-study projects in psychology (Registered Replication Reports) featuring 211 samples and
14 dependent variables. We used a counter-factual design to examine what biases could have emerged
if the studies (and ensuing meta-analyses) had not been preregistered and could have been subjected to
selective reporting based on significance of the outcomes in the primary studies. Our results show the
substantial variability in effect sizes that researcher degrees of freedom can create in relatively standard
psychological studies, and how selective reporting of outcomes can alter conclusions and introduce bias
in meta-analysis. Despite the typically thousands of outcomes appearing in the multiverses of the 294
included studies, only in about 30% of studies did significant effect sizes in the hypothesized direction
emerge. We also observed that the effect of a particular researcher degree of freedom was inconsistent
across replication studies using the same protocol, meaning multiverse analyses often fail to replicate
across samples. We recommend hypothesis-testing researchers to preregister their preferred analysis
and openly report multiverse analysis. We propose a descriptive index (Underlying Multiverse Variability)
that quantifies the robustness of results across alternative ways to analyze the data.
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Researcher Degrees of Freedom (DFs, Simmons et al., 2011) refer to the many arbitrary decisions23

that need to be made in designing, collecting, analyzing, and reporting research. In the analysis of24

hypothesis-testing research, the focus of this article, researcher DFs involve decisions such as choosing25

between different approaches for dealing with missing observations, excluding participants from the26

analysis depending on different criteria, and a range of other data processing and modelling decisions27

(for more examples, see Wicherts et al., 2016). Researcher DFs allow for many possible outcomes in28

a single study where the reported result depends on the specific combination of decisions made. This29

was illustrated recently by Silberzahn et al. (2018): When 29 independent teams examined the same30

data with the same research question, the teams’ estimated effect sizes (measured as odds ratios) varied31

from 0.89 to 2.93, with 20 teams finding a statistically significant effect in the expected direction. That32

different independent teams of researchers reached different estimates shows that there often is no clearly33

preferable analysis in hypothesis-testing research (see also Botvinik-Nezer et al., 2020; Breznau et al.,34

2021; Huntington-Klein et al., 2021; E.-J. Wagenmakers et al., 2022).35

The many possible statistical results that are enabled by researcher DFs have been referred to as a36

‘multiverse’ of statistical results (Steegen et al., 2016), ‘vibration of effects’ (Patel et al., 2015), or a37

‘specification curve analysis’ (Simonsohn et al., 2020). These multiverse style analyses entail (sensitivity)38

analyses of the robustness of results to researcher DFs and offer insights into potential biases that might39

emerge if researchers selectively report outcomes from them to present more convincing evidence in favor40

of a hypothesized effect. The proponents of multiverse style analyses are careful to define ‘reasonable’ or41

‘arbitrary’ decisions in light of substantive, statistical, methodological, and psychometric grounds (Del42

Giudice & Gangestad, 2021; Patel et al., 2015; Simonsohn et al., 2020; Steegen et al., 2016). In the43

current study, we use multiverse analysis based on arbitrary choices to demonstrate the potential impact44

of selective reporting on study-level effects and subsequent meta-analyses of resulting effect sizes. To45

ensure arbitrariness in our researcher DFs, we consider the effect size computations to be given. That is,46

we apply researcher DFs that we consider to not change the independent or dependent variables, and we47

do not add covariates or change the statistical model or constructs of interest.48

From the perspective of the broader literature the principal concern with researcher DFs is not that49

they allow multiple statistical results to be computed, but rather that they allow for selective reporting of50

possibly desirable outcomes. Throughout this article we use ‘selective reporting’ to refer to cases where51

multiple statistical results are examined in a study, but some go unreported (Page et al., 2020). We do not52

include in this definition the special case where no study results are reported and hence do not focus on53

publication bias of entire studies. Selective reporting is often focused on the significance of outcomes54

and can be intentional (‘p-hacking’) or happen unintentionally due to hindsight and confirmation biases55
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(Nickerson, 1998; Roese & Vohs, 2012). Selective reporting from the multiverse of statistical results56

is problematic as it can allow researchers to present statistical evidence even for incredible phenomena57

(Simmons et al., 2011). Numerous formal approaches and simulation studies have been used to show that58

selective reporting leads to an overrepresentation of false positive findings (Ioannidis, 2005) and inflated59

effect size estimates (Ioannidis, 2008) in the literature.60

Unfortunately, selective reporting appears common amongst researchers. In psychology, about 50-60%61

of researchers admit to not reporting all dependent measures in a study (Agnoli et al., 2017; John et al.,62

2012), and in a study registry comparison 70% of studies did not report all outcome variables (Franco et63

al., 2016). Moreover, there is an extensive literature on selective reporting in the fields of biomedicine,64

with evidence from, for example, neurology (Fusar-Poli et al., 2014), hematology (Wayant et al., 2017),65

pediatrics (Rosati et al., 2016), orthopedics (Rongen & Hannink, 2016), obesity (Rankin et al., 2017),66

and cancer research (Kyzas et al., 2005). A recent study examining results in 67 trials published between67

October and November 2015 in 5 top journals from general medicine found that 42% of pre-specified68

outcomes went unreported (Goldacre et al., 2019). Further evidence from the fields of education (Pigott69

et al., 2013) and studies on partner violence (Madden et al., 2019) suggests the problem of selective70

reporting is widespread indeed.71

The biases created by selective reporting in primary studies are inherited by meta-analyses that seek72

to quantitatively review effects or associations across many studies. Each of the studies included in a73

meta-analysis have their own multiverse. Since the results used for meta-analysis are subsets from these74

multiverses, meta-analytic result(s) also represent a subset from the multiverse of possible meta-analyses.75

To avoid that this subset is biased, meta-analytic reporting guidelines such as PRISMA (Moher et al.,76

2009) and MARS (Appelbaum et al., 2018) recommend meta-analysts to evaluate primary studies for77

selective reporting. We do not consider arbitrary choices made in the context of meta-analyses themselves78

(i.e., multiverse meta-analysis: Palpacuer et al., 2019; Voracek et al., 2019), but rather vary the analyses79

in the primary studies while keeping the meta-analytic inclusion criteria and analysis constant (i.e., we80

meta-analyze multiverses) to study the biasing effects of selective reporting based on researcher DFs in81

primary studies on meta-analytic outcomes.82

Such biasing effects have been studied in simulated data for meta-analysis (e.g., Botella et al., 2021;83

Carter et al., 2019; Friese & Frankenbach, 2020), but simulated data from known distributions may not84

be representative of actual psychological data that feature unknown (distributional) complexities. Also,85

the effects of researcher DFs have been studied in observed data of individual studies (Botvinik-Nezer et86

al., 2020; Breznau et al., 2021; Huntington-Klein et al., 2021; e.g., Silberzahn et al., 2018), but not in87

meta-analytic context to inform how they might affect cumulative knowledge. We combine these streams88
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of research and study the effects of researcher DFs and selective reporting in observed meta-analytic89

data, taking advantage of the unique opportunity offered by the open data of ten recent multi-lab direct90

replication projects in psychology (Registered Replication Reports) that featured a total of 211 samples91

studying 14 different outcome variables.92

Registered Replication Reports (RRRs) each consist of a set of studies (labs) that collected data93

on an effect in psychology using the same pre-specified research design, decision plan, and materials,94

collectively known as a ‘preregistration.’ Each RRR can be seen as making up one (or more) meta-analysis95

of direct (also called ‘exact’) replications, where the only difference between included studies is where96

they collected their data. Even though the preregistrations used in the actual RRRs limited the effect of97

researcher DFs in the original analyses, the open data from these extensive studies enable us to use a98

counter-factual design to see what biases could have emerged if the studies (and ensuing meta-analyses)99

had not been preregistered and could have been subjected to selective reporting based on significance100

of the outcomes in the primary studies. In doing so, we demonstrate the variability in results that may101

arise in meta-analytic data in the absence of preregistration, the limitations of multiverse analysis when102

applied to a single study, and illustrate the entire process of selective reporting, from the researcher DFs103

in primary studies that enable the practice to the consequences for meta-analysis.104

METHODS105

Figure 1 summarizes the design of this study. We identify decision points in each RRR where reasonable106

alternative decisions could have been made (absent any preregistration) and compute all resulting outcomes107

(create a multiverse) for each included lab. We then combine effect sizes from the lab multiverses in108

meta-analysis within each RRR. This design allows us to explore the effects of researcher DFs on research109

output by 1) examining the underlying multiverse variability in effect size estimates at the primary study110

level, 2) examining the resulting multiverse variability at the meta-analytic level, and 3) examining111

different mechanisms for selecting effect sizes from primary study multiverses for inclusion in the meta-112

analysis. We refer to the variability due to researcher DFs as the Underlying Multiverse Variability (UMV,113

statistically defined in ‘the multiverses’ section).114
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115

Figure 1. Summary of the study design. For each lab in a Registered Replication Report (RRR)116

multiverses were computed, analyzed and used for meta-analysis. ES = Effect size. Each RRR consists117

of K labs, lab i = 1, 2, 3, . . . K. Each lab has E effect size estimates in its multiverse. There are M118

possible combinations of the E effect sizes across labs, resulting in a meta-anlytic multiverse of size119

M. We approximate the meta-analytic multiverse by randomly sampling 105 meta-analyses from the120

meta-analytic multiverse. For details on how we selected researcher DFs, see Methods under the header121

‘Selection and justification of researcher DFs.’ This figure was created using the website draw.io.122

Transparency and openness123

All our code and data for this project are available on the Open Science Framework (OSF) at osf.io/j8yg2/,124

and permanently archived at Zenodo (doi.org/10.5281/zenodo.7341292). We refer directly to relevant125

files on the OSF using brackets and links in the sections below. We registered data cleaning code and the126

researcher DFs available in each RRR before proceeding to analysis (osf.io/h397y/). We only made minor127

code corrections and clarifications of researcher DFs after registration, fully detailed in Supplement A128

(osf.io/xem2y/). We handled all data in R version 4.0.2 (R Core Team, 2020), and cite used packages in129
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the reference list.130

Data Collection131

We included all ten RRRs available at the time of data collection (i.e., published up until 2019-05-15)132

available in the journals ‘Perspectives on Psychological Science’ and ‘Advances in Methods and Practices133

in Psychological Science’ (see also Olsson-Collentine et al., 2020). Three RRRs (RRR3, RRR5, RRR9)134

had multiple primary outcome variables (as explicitly identified in the accompanying publications). In135

total, we included 10 projects containing 14 primary outcome variables that could be meta-analyzed,136

consisting of 211 unique lab samples and 34,357 participants (Table 1). These values correspond to the137

sum of the labs and participants of RRR1 - RRR9, as RRR9 and RRR10 used the same sample.138

We use the RRRs because the meta-analyses they offer allow us to consider the effects of (selective139

reporting from) multiverse analyses in relation to a benchmark based on meticulously collected data140

from multiple labs (and different samples) using the same protocol. We selected the RRRs for our study141

over other multilab replication initiatives for two reasons. First, we wished to examine researcher DFs142

within a meta-analytic structure, which is what the RRRs nicely provide. The RRRs have the additional143

advantage that most of them report average results not significantly different from zero, allowing us to144

examine the bias from selective reporting under the most problematic circumstances (i.e., when there is145

no genuine effect) and the percentage of significant outcomes appearing across multiverses (Type I error146

rate). Second, we wished to allow for researcher DFs to depend on study design. The Many Labs series of147

replication projects (which we have worked with previously in Olsson-Collentine et al., 2020) consists of148

many effects studied at the same time in the same samples, meaning (almost) all researcher DFs will be149

identical across all studied effects. Hence the RRRs allow us to delve deep into the generalizability of the150

multiverse variability across labs and effects.151
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Table 1.152

Preregistered Multi-Lab Replication Projects153

RP Paper Countries Labs Effects N Sample and Settings Description of Effects

RRR1 Alogna et al.
(2014)

10 31 1 4832 31/32 samples were
undergraduate students aged
18-25, 1 general population
which was also the only online
sample.

Verbal overshadowing 1; Independent
two-group experiment. Participants either
described a robber after watching a video or
listed countries/capitals and after a filler task
attempted to identify the robber in a lineup.

RRR2 Alogna et al.
(2014)

8 26 1 2932 22/23 samples were
undergraduate students aged
18-25, 1 general population
which was also the only online
sample.

Verbal overshadowing 2; Different from 1 only
in that the filler task took place before the
descriptive task instead of after.

RRR3 Eerland et al.
(2016)

2 10 3 1210 11/12 samples were
undergraduate students mostly
aged 18-25, one of which was
online. 1 sample was a broader
online sample.

Grammar’s effect on interpretation; Independent
two-group vignette experiment with three
outcome variables. Participants read about
actions either described in imperfect or perfect
tense and then rated protagonist’s intentions
(intentionality/intention attribution/detailed
processing).

RRR4 Hagger et al.
(2016)

10 24 1 3127 All samples consisted of in-lab
undergraduate students

Ego depletion; Independent two-group
experiment. Participants either assigned to a
cognitively demanding or a neutral task, and
performance was then measured in a subsequent
cognitive task.

RRR5 Cheung et al.
(2016)

5 16 2 2279 All samples consisted of in-lab
undergraduate students aged
18-25

Commitment on neglect/exit; Independent
two-group experiment with two outcome
variables. Participants either primed to think
about commitment to or independence from
partner.

RRR6 Wagenmakers et
al. (2016)

8 17 1 2542 All but one sample explicitly
consisted of students and all took
place in-lab. The last sample was
recruited at university grounds.

Facial feedback hypothesis; Independent
two-group experiment. Participants either
induced to ’smile’ or ’pout’ by holding a pen in
their mouth differently and simultaneously rated
funniness of cartoons.

RRR7 Bouwmeester et
al. (2017)

12 21 1 3669 All samples consisted of in-lab
undergraduate students aged
18-34.

Intuitive cooperation; Independent two-group
experiment. Economic game with money
contribution to a common pool either under
time pressure or time delay.

RRR8 O’Donnell et al.
(2017)

13 40 1 7041 All samples consisted of in-lab
undergraduate students aged
18-25

Professor priming; Independent two-group
experiment. Participants primed with either a
’professor’ or ’hooligan’ stimuli. Outcome was
percentage correct trivia answers.

RRR9 McCarthy et al.
(2018)

13 26 2 6720 All samples consisted of in-lab
students aged 18-25

Hostility priming; Independent two-group
experiment with two outcome variables.
Participants descrambled sentences, either 20%
or 80% were hostile, then rated an individual
and a list of ambiguous behaviors on perceived
hostility.

RRR10 Verschuere et al.
(2018)

12 25 1 3245 All samples consisted of in-lab
students aged 18-25

Moral reminder; Independent two-group
experiment. Participants either recalled the Ten
Commandments or books they had read.
Outcome was degree of cheating when reporting
results.

Note:
All RRRs published up until 2019-05-15 in the journals ‘Perspectives on Psychological Science’ and ‘Advances in Methods and Practices in Psychological Science’.
RP = Replication Project, Countries = number of lab country locations, Effects = number of primary effects studied, N = participants before exclusions, RRR =
Registered Replication Report. Table adapted with permission from Olsson-Collentine et al. (2020). Code to reproduce table: osf.io/jehpy/

We downloaded individual level data for all RRRs in Table 1. Summary data of all RRRs were154

available on the OSF. When the raw lab data were not publicly available via the OSF we contacted authors155

by email to request them. Only for one lab in RRR1 and 2 and two labs in RRR3 were we unable to156

acquire their individual level raw data.157

For each RRR, we standardized data formatting across labs, fixed minor mistakes (e.g., mislabeled158
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columns in RRR8), and prepared the datasets for multiverse analysis (osf.io/cf86y/). We prepared the data159

in the same way as the original RRRs to the extent possible. However, we largely had to write our own160

code, because the alternative decisions needed to create our multiverses (e.g., exclusion criteria) could161

not be taken in the code by the original authors. In preparing the datasets for analysis, we only excluded162

participants due to reported experimenter error or when participants were reported to not have followed163

instructions or completed the experiment. Note that exclusions based on ‘not following instructions’ are164

usually ad hoc, and hence are distinct from formalized exclusions based on attention checks.165

The Multiverses166

Although multiverse type analyses have been suggested by multiple authors under somewhat different167

names (Patel et al., 2015; Simonsohn et al., 2020; Steegen et al., 2016) all multiverse analyses consist of168

identifying points in the research process where multiple reasonable decisions could have been made,169

identifying what these decisions might be, and examining the impact of these decisions on the study results.170

A core assumption of multiverse type analysis is that the alternative decisions are all (approximately)171

equally reasonable (Simonsohn et al., 2020; Steegen et al., 2016; see also Del Giudice & Gangestad,172

2021).173

It is important that researcher DFs are defined such that these choices are indeed ‘reasonable’ or174

‘arbitrary’ on a priori substantive and methodological grounds (Patel et al., 2015; Simonsohn et al.,175

2020; Steegen et al., 2016). Del Giudice & Gangestad (2021) rightly pointed out that many decisions176

implemented in published multiverse analyses were not truly arbitrary (are ‘non-equivalent’) because they177

can a priori be expected to result in different a) measurement reliability/validity, b) studied psychological178

effects (e.g., when including a covariate that changes the prediction) or c) power/precision. Only decisions179

for which this does not hold (i.e., we are either confident they are equivalent or uncertain) should according180

to Del Giudice & Gangestad (2021) be included in a multiverse analysis.181

We agree with Del Giudice & Gangestad (2021) that such substantive and methodological issues182

should be considered when performing multiverse analysis as a sensitivity analysis. Hence, we carefully183

selected our researcher DFs to reflect choices for which we saw no prior substantive or methodological184

grounds to expect them to affect the true effect sizes tapped by the different labs. However, we could185

imagine that others might object to some of those choices and hence we offer a range of supplementary186

results to assess how alternative choices in designing the multiverse affect our results. We also make our187

data and code available for re-analysis using alternative multiverse setups.188

Selection and justification of researcher DFs189

We selected our researcher DFs to correspond to normative researcher behavior that is at risk of selective190

reporting in the fields of the RRRs that make up our data. These RRRs belong to the fields of social191
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and cognitive psychology (Olsson-Collentine et al., 2020). Although there are many researcher DFs192

before analyzing the data (Wicherts et al., 2016), due to using already collected data we were only able193

to vary post data collection decisions. Moreover, because our focus was on researcher DFs in primary194

studies and their consequences for downstream meta-analysis, we only varied decisions in data processing195

(the data multiverse, Steegen et al., 2016) and not the statistical models used in data analysis (the model196

multiverse). Consequently, several chosen researcher DFs concerned using different exclusion criteria197

(which we prepend with ‘E’), although we also varied how the composite score was computed from198

multiple indicators (researcher DFs prepended with ‘S’).199

When creating our list of researcher DFs, we proceeded in two steps: We 1) set up a list of ‘common’200

researcher DFs, and then 2) set up a list of researcher DFs unique to each RRR. These were then combined201

to create our final list of researcher DFs for each RRR, which we registered before analyzing any data202

(Supplement B). Because all labs in an RRR used the same design, it was only necessary to identify203

decisions and create associated options once for each RRR and not for each lab/study separately. Our204

coded researcher DFs each consisted of a decision that needs to be made and several associated potential205

options for that decision. When defining the researcher DFs, we explored the data in the sense of206

examining whether potential DFs could be applied (i.e., whether the variables existed and how they were207

defined) but did not examine what effect applying them would have.208

We created our list of common researcher DFs based on recommendations in statistical textbooks,209

common decisions by applied researchers as reported in research literature, data analytic decisions made210

by the included RRRs, and our own experience of decisions encountered in the literature. Table 2 provides211

an overview of all common researcher DFs. We considered option a) across decisions to be the default212

option, corresponding to no scale adjustments or participant exclusions (although for some researcher213

DFs, an active decision must be made; S2, E1 Table 2). In Supplement C we detail how we selected214

each researcher DF and its options. We acknowledge that many additional multiverses could be run in215

these and other studies, but we consider our setup typical of researcher DFs that could be used in practice216

across a range of psychological studies, and as such useful to study the influence of selective reporting.217

Researchers instead interested in using multiverse analysis as a sensitivity analysis for a particular effect218

should carefully consider the advice of Del Giudice & Gangestad (2021) on equivalent pathways before219

applying any of the researcher DFs in Table 2.220
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Table 2.221

List of common researcher degrees of freedom applied to Registered Replication Reports222

Decision Options Short Explanation

S1. Post hoc scale length a) No adjustment
b) Drop the item with the lowest item-rest correlation
c) Drop the two items with the lowest item-rest correlations

It is unclear how common it is to post hoc drop items ’that
don’t work’ from a scale, but dropping more than a few seems
unlikely. In the research we are looking at (experimental) there
are rarely long scales. Excluding 1-item scales, the average
scale length in a large sample of psychological research in 2014
was 6.87 (SD = 7.18) (Flake et al., 2017)

S2. Composite score a) Unweighted average score
b) Sum score
c) PCA score: Varimax rotation, force two components and
pick the first, requires at least 3 items.

For Likert-type scales with multiple items. Other DVs e.g.,
reaction time variability (RRR3), dichotomous correct/incorrect
(RRR1&2), continuous measures (RRR7), single item DVs
(RRR10) may need more unique choice options. We chose
Varimax rotation to maximize variance between outcomes.

E1. Missingness DV a) Any missing items -> list-wise deletion
b) If ≤25% items missing then pair-wise deletion of missing
items. Otherwise list-wise.

List-wise deletion appears to be by far the most common
approach to missing data. In van Ginkel et al.’s (2010) review
of personality psychology 97% used list-wise deletion for
missing data and several reviews in medicine have also found it
to be an extremely common method (Eekhout et al., 2012;
Rombach et al., 2016; Burton & Altman, 2004). Nonetheless,
we see that for example RRR6 used pair-wise deletion (option
b) which may seem reasonable to some researchers, in
particular with a longer scale.

E2. Missingness E3-E4 variables a) No exclusion
b) Missing on any variable -> list-wise deletion

RRRs that excluded data based on a E3-E4 variable (e.g., age)
did list-wise deletion when data was missing. For other
non-DV variables we make no exclusions based on
missingness, unless this was explicitly done by the project (e.g.,
’task completion’ RRR10).

E3. Age a) No exclusion
b) Not 18-24
c) Not 18-23
d) Not 18-22
e) Not 18-21

Used by 9/10 RRRs for exclusions. Across 25 cohorts of Dutch
bachelor psychology students 96.7% of students were below 25,
92.7% below 24, 86.6% below 23 and 77.8% below 22
(Wicherts et al, 2012). The oldest students in this dataset were
25. We choose a set of age ranges based on these data that we
believed might go unremarked if used as exclusion criteria in
psychological literature with an accompanying motivation such
as ‘we only included young adults’.

E4. Language / Student / Ethnicity a) No exclusion
b) Exclude participants not belonging to the dominant category

Used by 3/10 RRRs. Demographic variables which are
sometimes used for exclusions. Language includes variables
such as ’native speaker’ which may have a yes/no response.
Ethnicity includes similar variables such as ’country of birth’ or
’race’. If multiple of these demographic variables are available
they are treated as separate exclusion criteria.

E5. Attention check a) No exclusion
b) Exclude if failed >50% of attention check items (i.e., with
two items, must fail both, e.g., RRR7)
c) Exclude if failed any attention check item

Attention checks are common in psychology, as evidenced by
the more than 1500 citations of Oppenheimer et al. (2009) who
introduced ’instructional manipulation checks’. Curran (2016)
suggests ’conservative’ exclusions based on 50% failed
attention checks when multiple items are used. This category
does not include manipulation checks which vary more in
format.

E6. Univariate outliers a) No exclusion
b) DV score > 2 SD from mean
c) > 3 SD from mean
d) > 1.5 times the interquartile range

Used by 1/10 RRRs. Commonly recommended cutoffs (Bakker
& Wicherts, 2014). Test for outliers across groups.

E7. Multivariate outliers a) No exclusion
b) Mahalanobi’s distance with p < .001

If the outcome variable is a correlation. Tabachnik, Fidell and
Ullman (2007) recommend using Mahalanobi’s distance with a
cutoff of p < .001 for detecting multivariate outliers. Outliers
tested within groups as recommended by Tabachnik et al.

Note:
S. = Degree of Freedom (DF) affecting Scale composition, E. = Exclusion DF, DV = Dependent Variable, SD = Standard Deviation, PCA = Principal Component
Analysis, RRR = Registered Replication Report. Code to reproduce table: osf.io/jehpy/.

In addition to the list of common researcher DFs, which we applied to all RRRs, each RRR had several223

unique researcher DFs. These arise from the uniqueness of each research topic and design and consisted224

of different exclusion criteria. We coded between 2 (RRR3) and 10 (RRR7) unique researcher DFs for225

each RRR, each decision with 2-6 associated options. Due to the large number of unique researcher DFs226

we do not describe them all in detail here, but provide only a broad overview and refer interested readers227

to Supplement B.228

We can separate between two types of ‘unique’ researcher DFs: either 1) the RRRs excluded partici-229

pants based on some variable that was not defined in our list of common decisions or 2) an RRR measured230
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variables (not in our list of common decisions) that they could have used for exclusions. As an example231

of the first case, in RRR4 (ego-depletion) participants with less than 80% correct on the main task were232

excluded. However, 80% is a largely arbitrary number, and someone might also consider values such233

as 75%, 85%, 90%, or many others, in addition to no exclusions. In cases like these, when there are an234

infinite number of possible values to choose from, we have elected only a maximum of six possible values235

that we believe an applied researcher would reasonably pick.236

As an example of where an RRR measured variables they could have used for exclusions: RRR5237

(commitment to romantic partner), amongst other things, asked participants whether they lived within 60238

miles of their partner (yes/no) but did not use this variable in their analysis. However, another researcher239

might have found it relevant to only consider participants (not) living close to each other and used this240

variable for exclusions. Collecting data on a variable with no clear purpose thus adds researcher DFs and241

increases the risk of selective reporting, which we in this case used to create our multiverses.242

Applying researcher DFs to the RRRs243

After registering the coding protocol for ‘common’ researcher DFs, we coded the applicability of each244

common researcher DFs to each RRR, which differed depending on, for example, how the outcome245

variable was measured (binary vs. continuous, one item vs. a scale) and how projects coded their data.246

Because some labs within RRRs pre-screened their participants for the original RRR exclusion criteria, it247

was not always possible to apply all exclusion criteria to all labs in an RRR. Nonetheless, we still included248

such labs, prioritizing the inclusion of more labs over the possibility of less multiverse variation. The249

coded common and unique researcher DFs for all RRRs are available in Supplement B (osf.io/wj38n/).250

We computed resulting effect sizes from all possible combinations of decisions for each lab in an251

RRR (osf.io/zhdrx/). Incompatible decision combinations were not applied. For example, if we wished252

to drop two items from a scale (Table 2; S1c) but required at least three items in the scale for Principal253

Component Analysis (Table 2; S2c), this decision combination was inapplicable to scales with fewer254

than 5 items. We standardized mean differences (Cohen’s d, p. 226, Borenstein, 2009) and computed255

log odds ratios for RRR1 and RRR2. Effect sizes were originally analyzed unstandardized in all RRRs256

except for RRR4, and if certain researcher DF lower the within sample variance, as is highly likely, then257

standardized effect sizes will appear larger. However, because certain of our researcher DFs change the258

dependent variable, and we wanted to draw conclusions across RRRs, it was necessary to standardize259

effect sizes. As most meta-analyses use standardized effect sizes and we are interested here in the biasing260

effects of selective reporting on typical unregistered meta-analyses, we do not consider standardization of261

effect sizes a major concern for our analysis.262

To prevent including lab multiverses with an unrealistically small number of participants, we only263
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included lab multiverses with at least 24 participants per experimental group, the median sample size in264

psychology (Bakker et al., 2012), in our primary analyses. Three labs in RRR2 (L09, L17, L26) and one265

lab in RRR8 (L24) had smaller sample sizes than required in all conditions and were excluded from these266

analyses. We present the results of our analyses also without this sample size restriction in Supplement D.267

Analysis268

A consequence of assuming that the alternative decisions in the multiverse are equally reasonable is that269

under the null hypothesis that no researcher DF has a systematic effect (i.e., is an actual moderator of270

the effect) we can consider the distribution of effect sizes in the multiverse as random variability around271

a true score. We refer to the variability underlying a given set of researcher DFs as the Underlying272

Multiverse Variability (UMV) and define it as the standard deviation (SD) in effect size estimates that are273

in the multiverse of the same study. A different set of researcher DFs will reveal different UMV. Other274

researchers have focused on the distribution of p-values (Simonsohn et al., 2020; Steegen et al., 2016) or275

on the range of effect sizes in the multiverse (e.g., Patel et al., 2015), but we consider it more useful to276

treat multiverse variability in terms of the standard deviation of effect size estimates, in line with how277

sampling error is defined. The UMV should be seen as a descriptive tool that highlights some degree of278

variability that might have a relation with bias due to selective reporting over and beyond sampling error,279

rather than a well-defined statistic.280

To demonstrate the effects of researcher DFs on research output, we 1) examined the variance in281

effect size estimates at the lab level (lab multiverses) and 2) compared meta-analytic average effect size282

estimates based on how lab outcomes were selected from their multiverses. To examine the variance in283

effect size estimates at the lab level, we created funnel plots, computed UMV, and standard deviations284

in effect size resulting from variation across the options within a single researcher DF. For the funnel285

plots, we plotted all effect size estimates at the lab level using either the standard error (for log odds286

ratios; RRR1/RRR2) or sample size as the y-axis (for standardized mean difference effect sizes; RRR3 –287

RRR10). We used total sample size (N) on the y-axis for all standardized mean difference (SMD) effect288

types since most of our coded researcher DFs affected sample size.289

To examine how large the effects of applying a single researcher DF can be and the relative impact of290

our different researcher DFs, we computed the standard deviation in a lab’s estimated effect size across291

the options associated with each decision. For each researcher DF, we computed the standard deviation in292

effect size when all other researcher DFs were set to their default value (corresponding to option ‘a’ for293

each researcher DF, see Table 2 and Supplement B). In addition to examining standard deviations for labs294

within RRRs, we also disaggregated these lab estimates across RRRs and then aggregated them across295

common and unique researcher DF categories. In doing so, we treated all unique researcher DFs as one296
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category.297

Due to computational limitations, and because it is often the case that some researcher DF must be298

applied before another (e.g., outliers cannot be removed before the composite score has been computed),299

we only applied the researcher DFs in a single fixed order. That is, if we have three researcher DFs (1, 2,300

3) then we always applied them in the order 1, 2, 3 regardless of chosen option, rather than also varying301

the order (e.g., 2, 1, 3). This fixed order may affect results when removing items with the lowest item-rest302

correlation from a scale, or excluding participants based on outlier criteria, although we see no reason to303

expect a systematic interaction between these two and any other researcher DFs. The fixed order also304

makes it impossible to compute the impact of a single researcher DF across all possible researcher DF305

combinations, although it remains possible to compute its impact when not applying any other researcher306

DFs (see previous paragraph).307

When comparing meta-analytic average estimates, we compared a) the original (preregistered) RRR308

estimates, with b) an estimate of the distribution of all possible meta-analytic combinations, c) randomly309

selected lab effect sizes, and d) lab effect sizes selected by one of four biased selection mechanisms310

(see below). We ran all meta-analyses as random-effects models with the restricted maximum likelihood311

estimator for estimating the between-study variance using the R-package ‘metafor’ (Viechtbauer, 2010).312

The huge number of possible effect size combinations across labs for each RRR, the smallest consisting313

of 697×10ˆ33 possible meta-analyses, made it impossible to compute the full distributions of possible314

meta-analytic outcomes. Instead, we drew large random samples to approximate the distributions. For315

each RRR (or outcome variable when an RRR contained multiple primary outcomes), we proceeded as316

follows: We drew one random effect size from all possible effect sizes from lab 1, one random effect317

size from all possible effect sizes from lab 2, one from lab 3, one from lab 4, and so on until we had318

drawn one effect size from all labs in an RRR. The drawn effect sizes across labs were then combined319

using a meta-analysis. We repeated this procedure, sampling with replacement from each lab’s multiverse320

of effect sizes, until we had sampled 100,000 effect sizes from each lab, and consequently computed321

100,000 meta-analyses for each RRR. These samples of meta-analyses constituted our approximation of322

the distribution of possible meta-analyses for each RRR (or outcome variable when an RRR contained323

multiple primary outcomes). The means of these distributions (and the means of the estimated lower/upper324

95% Confidence Intervals; CIs) constituted our random sample of estimates.325

When selectively reporting results, researchers may exhibit different behavior. We included four326

types of biased selection mechanisms (Table 3: ‘Most significant,’ ‘Below alpha,’ ‘Random significant,’327

‘Bounded significant’) with different motivations. All selection mechanisms focused on statistical signif-328

icance, and we used a two-tailed test with α = .05 for hypothesis testing. First, we selected the effect329

13/44



size with the lowest p-value in each lab. This allowed us to examine the most extreme selection of results330

possible due to p-hacking (‘most significant’). We included this scenario as a worst-case scenario. Second,331

selective reporting may sometimes result in a ‘bump’ just below p = .05 when aggregating p-values across332

selectively reported studies (‘below alpha’). This is most likely in the case of incremental p-hacking333

approaches such as optional stopping (e.g., Hartgerink, 2017). To compare what a meta-analysis of such334

data might look like, in the ‘below alpha’ condition, we selected, for each lab in an RRR, the outcome335

with a p-value closest below .05 (or, if there were no p-values below .05, the lowest value). These two336

approaches (‘most significant,’ ‘below alpha’) attempted to select a single result from the multiverse, but337

it may be that several effect sizes have equivalent p-values due to being based on exactly the same sample.338

If so, we picked the effect size with the fewest researcher DFs deviating from their default option a.339

Third, we represent a p-hacker who is satisfied with any significant effect size they encounter (in340

the expected direction), by picking a random effect size out of those that were statistically significant341

(‘random significant’). If no effect sizes were significant, the effect size with the lowest p-value was342

picked. Fourth and finally, when a p-hacking researcher tries multiple analyses, they might choose to343

report the analysis that resulted in the smallest p-value. However, selecting the result with the smallest344

p-value across the full multiverse suggests that the p-hacker systematically explored the full multiverse to345

find the strongest possible effect, whereas reality probably consists of a more ad hoc and limited search.346

Hence, we represent a ‘bounded’ search by 1) randomly drawing 100 possible outcomes and 2) out of347

these 100 outcomes selecting the one with the smallest p-value.348

With all our biased selection mechanisms (i.e., excluding the random draw and original meta-analytic349

results, see Table 3), we applied a “hypothesized direction filter.” That is, when selecting an effect size at350

the lab level, we excluded all effect sizes that were in the opposite direction of the originally predicted351

effect (osf.io/r2dum). If there were no effect sizes in the predicted direction, we excluded all significant352

effect sizes in the ‘wrong’ direction and selected outcomes from the remainder. We added this filter353

because we believe researchers who apply selective reporting in reality are unlikely to be agnostic about354

the direction of their effect, and our focus in this study is on selective reporting, not Hypothesizing After355

Results are Known (HARKing, Kerr, 1998)356
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Table 3.357

Summary of outcome selection mechanisms358

Selection mechanism Hypothesized
Direction Filter

Single outcome Description

Pre-registered No Yes The original RRR meta-analytic average effect
size with pre-registered decisions.

Random draw No No The average point estimate and upper/lower 95%
CI from 105 meta-analyses randomly sampled
from all possible meta-analyses.

Most signficant Yes Yes Select the effect size in the multiverse with the
smallest p-value.

Below alpha Yes Yes Select the effect size in the multiverse with a
p-value closest below p = 0.05. If no p-value
below the cutoff, pick the smallest.

Random significant Yes No Identical to the random draw, but with effect sizes
first limited to only significant effect sizes.

Bounded significant Yes No We drew 100 effect sizes from a lab’s multiverse,
and selected the effect size with the lowest p-value.
This was repeated 105 times, resulting in 105

values per lab. These were then meta-analyzed and
summarized as above for the random draw.

Note:
Description of different implemented selection mechanisms for selecting effect sizes at the lab-level to meta-
analyze. ’Hypothesized Direction Filter’ = exclude effect sizes not in the predicted direction (yes/no), ’Single
outcome’ = selection mechanism resulting in a single meta-analytic result (yes/no). Code to reproduce table:
osf.io/jehpy/.

Publication bias, the complete suppression of a study being published, and selective reporting (selec-359

tion of reported results amongst multiple possibilities) are closely related, and it is intuitively appealing to360

believe correcting for publication bias may be sufficient for generally removing biases in the meta-analytic361

data (e.g., Kvarven et al., 2019). We applied three publication bias correction methods [PET-PEESE,362

3PSM, and p-uniform*; Stanley & Doucouliagos (2014); Vevea & Hedges (1995); van Aert & van Assen363

(2020)] to examine their applicability to selective reporting in the absence of publication bias.364

RESULTS365

After excluding conditions that resulted in fewer than 24 participants per experimental group, 8/14 RRR366

multiverses decreased in size, as can be seen in Table 4. The absolute decrease was largest for the largest367

multiverses (RRR05 and RRR07), with RRR07 showing the largest absolute decrease and decreasing368

from 2,621,440 to 525,680 (an 80% decrease) potential outcomes. However, the proportionally largest369

decrease was seen in RRR08, which decreased from 115,200 to 19,200 (83% decrease) potential outcomes.370

More importantly, as evidenced by the median number of multiverses per lab, even in the RRRs with371

relatively few researcher DFs, the researcher DFs jointly created thousands of alternative outcomes per lab.372

Nonetheless, many labs found zero significant (at p = .05) effect sizes within their multiverses. Across all373
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studies (counting labs with multiple DVs as separate studies), 205 / 294 (70%) encountered no significant374

effect sizes in the hypothesized direction in their multiverses and 134 / 294 (46%) found no significant375

effect sizes in any direction. The size of the multiverse was strongly correlated with the number of studies376

that encountered significant effect sizes in the hypothesized direction within their multiverses (Pearson’s r377

= 0.63, 95% CI [0.14, 0.87]).378
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Table 4.379

Multiverse sizes before and after filtering out outcomes with < 24 participants per experimental group380

Meta-Analysis Common
DFs

Unique
DFs

N [lq, uq] Multiverse size
before exclusion

Multiverse size
after exclusion

Labs after
exclusion

Labs with any
sig.

Labs with hyp.
sig.

RRR01 5 5 116 [107, 125] 3,840 3,840 (100%) 31 4 (13%) 4 (13%)
RRR02 5 5 88 [84, 98] 3,840 3,840 (100%) 23 10 (43%) 10 (43%)
RRR03 Attribution 6 2 84 [82, 84] 3,840 3,816 (99%) 10 5 (50%) 3 (30%)
RRR03 Intention 6 2 84 [82, 84] 3,840 3,840 (100%) 10 3 (30%) 1 (10%)
RRR03 Process 7 2 84 [83, 85] 7,680 7,680 (100%) 10 2 (20%) 0 (0%)

RRR04 5 3 76 [68, 90] 23,040 20,160 (88%) 24 14 (58%) 7 (29%)
RRR05 Exit 6 9 82 [70, 94] 2,488,320 1,503,904 (60%) 16 12 (75%) 7 (44%)
RRR05 Neglect 6 9 82 [70, 94] 2,488,320 1,540,176 (62%) 16 15 (94%) 10 (62%)
RRR06 7 5 96 [77, 111] 122,880 61,440 (50%) 17 9 (53%) 5 (29%)
RRR07 3 10 74 [63, 95] 2,621,440 525,680 (20%) 21 18 (86%) 10 (48%)

RRR08 8 4 79 [65, 102] 115,200 19,204 (17%) 39 31 (79%) 16 (41%)
RRR09 Behavior 8 4 169 [114, 218] 46,080 46,080 (100%) 26 16 (62%) 5 (19%)
RRR09 Hostility 8 4 168 [114, 218] 46,080 46,080 (100%) 26 13 (50%) 10 (38%)
RRR10 5 5 90 [77, 107] 11,520 3,808 (33%) 25 8 (32%) 1 (4%)

Note:
Meta-analytic distributions and estimates after excluding analytic choices that resulted in <24 particants per experimental group at the study-level. Three labs in
RRR2 (L09, L17, L26) and one lab in RRR8 (L24) always had fewer than 24 participants and were excluded. ’Labs with any sig.’ = number of labs (%) with any
significant (at p = .05) effect size in their multiverse, ’Labs with hyp. sig.’ = number of labs (%) with any significant (at p = .05) effect size in the hypothesized
direction in their multiverse. DFs = Researcher Degrees of Freedom, ’Common DFs’ = DF from a common list of potential DFs, ’Unique DFs’ = study-unique DFs,
M = Median study multiverse size, N [lower quartile, upper quartile] = Median study sample sizes across their multiverses. Code to reproduce table: osf.io/jehpy/.

Lab multiverses381

There can be substantial variation in effect sizes within labs due to researcher DFs. Figure 2 shows382

effect sizes across the multiverses for 16/24 labs in RRR04. Similar plots for all RRRs (or outcome383

variables when an RRR contains multiple), including for all labs in RRR04, can be found in Supplement384

E (osf.io/2htc6/).385
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386

Figure 2. Arbitrary decisions in research cause underlying multiverse variability (UMV) in effect size387

estimates. Funnel plots showing the effect sizes based on the multiverses in 16 labs for RRR04, after388

removing cases where n < 24 in either experimental group. Values in upper left corner of each facet are389

UMV for each lab. For legibility, 16/24 RRR04 labs are shown; the figure including all labs is available390

in Supplement E (osf.io/2htc6/). L01 – L16 are lab indicators. Solid lines are funnel lines based on the391

t-distribution. Effect sizes falling outside the funnel lines are statistically significant at α = .05 using a392

two-tailed test. Dotted lines indicate zero effect size. Colors in the funnel plots indicate the frequency of393

occurrence of an effect size. Brighter colors indicate that an effect size occurred more often. N = total394
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sample size. Code to reproduce figure: osf.io/thuyk/.395

Overall in Figure 2, statistically significant observations (indicated by observations falling outside the396

funnel lines) were rare (median = 0.87%, interquartile range = 0 - 3%). There were labs with a higher397

proportion of significant outcomes (L14 = 25%, L04 = 24%, L16 = 17%), but in only one case were these398

in the hypothesized direction (L04). The median underlying multiverse variability (UMV) across labs in399

Figure 2 was 0.1SD, interquartile range (IQR) = 0.09 - 0.15. Effect sizes could change by as much as d =400

0.97 (L08). Pearson’s correlation based on the 16 labs in Figure 2 between UMV and sample size before401

applying researcher DFs was r = -0.51.402

Across RRRs, the median lab UMV was 0.11SD (IQR = 0.08 - 0.14) for SMD effect sizes and 0.07SD403

(IQR = 0.04 - 0.12) for log OR, but researcher DFs could change effect sizes in a lab by as much as d =404

1.27 (RRR05 Neglect, L10) and log OR = 1.31 (RRR01, L05). We expected the lab UMV, just as the405

standard error, to be generally negatively correlated with (original) sample size. However, the median406

correlation between lab UMV and sample size (before applying researcher DFs) within RRRs was r =407

0.09 (IQR = -0.11 - 0.37). Hence, a large sample size does not ensure a small UMV.408

There can be substantial variation between labs also in which researcher DF leads to variability in409

effect sizes (Figure 3). Figure 3 shows the standard deviation (SD) in effect size within the labs from410

Figure 2 when applying a single researcher DF. Despite identical study design across labs and the same411

researcher DF being applied, no two bar plots look identical and labs differ in which researcher DF412

creates the most variation. For example, in Lab 7 (L07) excluding participants based on different accuracy413

criteria for the main DV (U1) resulted in the largest SD, whereas in Lab 6 (L06) using different criteria414

for defining and excluding outliers (E6) led to the most variation in estimated effect size. Figures 2 and415

3 together demonstrate that multiverse analyses should not necessarily be expected to be replicable in416

new data, because across labs the same researcher DFs can yield different degrees of effect size variance417

(Figure 2) and this variance can be primarily caused by different researcher DFs (figure 3). Note that the418

effect sizes in Figure 2 arose from all possible combinations of the researcher DFs and not by applying419

them separately as in Figure 3 (see ‘analysis’ methods section), which explains the larger range of effect420

sizes in Figure 2.421
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422

Figure 3. The same arbitrary decisions have a different effect in comparable studies. Standard423

deviation (SD) in effect size estimates in 16 labs in RRR04 resulting from applying different researcher424

degrees of freedom (DFs) individually, after removing cases where n < 24 in either experimental group.425

For legibility, 16/24 RRR04 labs are shown; the figure including all labs is available in Supplement E426

(osf.io/2htc6/). L01 – L16 are lab indicators. Indicators in parentheses on the Y-axis (E2, E3, E4 1, E4 2,427

E6, U1, U2, U3) refer to DF codes for each coded DF (Supplement B osf.io/wj38n/). The Y-axis is428

ordered by median SD across labs. Code to reproduce figure: osf.io/thuyk/429

Some researcher DFs generally contribute more to the UMV than others, and thus constitute larger430
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risk factors when considering selective reporting. Figure 4 shows the SDs in estimated effect sizes in labs431

resulting from applying each researcher DF individually, disaggregated across RRRs and then aggregated432

into their respective categories. How the composite score was computed from a scale with multiple433

items had the largest median effect amongst SMD effects (d = 0.04, lower panel top row, Figure 4), and434

in supplement F we demonstrate how removing (the source of variation in) this researcher DF (S2.c;435

computing the composite score based on PCA) decreases overall UMV, showing how the removal of436

sources of variation effectively decreases the risk of selective reporting. Figure 4 also show that excluding437

participants on age had a relatively strong effect (median upper panel, log OR = 0.05, lower panel, d =438

0.03. In supplement G we show that this effect is driven by the large degree of exclusions across the439

options of the age researcher DF (E3), by comparing it with a version with more broad inclusion criteria.440

That is, when researcher DFs result in datasets with less overlap (i.e., that are less correlated), the UMV441

increases. Hence, we can predict that certain researcher DFs are of more serious concern under selective442

reporting, although the observed effect in any given sample will depend on random fluctuations in the443

sample.444
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445

Figure 4. Some arbitrary decisions tend to create more effect size variability than others. Standard446

deviation (SD) in effect size estimates in labs resulting from different researcher degrees of freedom447

(DFs) applied individually. The top panel shows results for Registered Replication Reports (RRRs) with448

an outcome measured as log odds ratio, and the lower panel for RRRs measured as standardized mean449

differences. The Y-axis is ordered by median effect size SD. Data are after removing cases where n <450

24 in either experimental group, disaggregating DFs across Registered Replication Reports (RRRs) and451

aggregating into categories. Indicators in parentheses on the Y-axis (S1, S2, E1, E2, E3, E4, E5, E6) refer452

to DF codes in Table 2 or (U) to DFs coded as unique for each research project. The Unique (U) category453
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was aggregated across all distinct unique DF. Code to reproduce figure: osf.io/thuyk/.454

Unique researcher DFs only had the fifth highest median SD (d = 0.02) for SMD effects (lower panel455

Figure 4), likely due to many unique researcher DFs having little effect. However, they also show the456

largest range in possible outcomes. For example, within RRR07, choosing to exclude participants based457

on whether they complied with the set time limit or not (U2) resulted in the largest median effect size458

SD of all researcher DFs for that RRR (SD = 0.21, see also Supplement E). This same researcher DF in459

RRR07 resulted in 4 out of the 5 highest effect size SDs in Figure 4. The remaining observation (third460

from the right) belonging to RRR09 Hostility, lab 1, and resulted from choosing whether to exclude461

participants based on their study major. Unique researcher DFs show less impact in the log odds ratio462

effects (upper panel Figure 4), which may be due to fewer labs/researcher DFs, and most unique researcher463

DFs in RRR01/02 only being applicable to a few of the constituent labs (see Supplement B). For example,464

only three labs included a comprehension check (U1), and only three (different) labs coded ‘familiarity465

with effect’ (U2).466

Meta-analytic multiverses467

Variability in effect sizes within labs due to researcher DFs implies that many different meta-analytic468

outcomes are possible. How and which effect sizes were selected in labs will change meta-analytic469

results. Figure 5 shows multiple meta-analytic average effect size estimates for all outcome variables,470

depending on how effect sizes were selected in the constituent labs. The grey density curves indicate the471

empirical distributions of meta-analytic point estimates across multiverses for each outcome. UMV in472

point estimates ranged from 0.02SD (RRR09 Hostility) to 0.04SD (RRR03 Intention) for standardized473

mean differences and for log odds ratios rounded to 0.02 SD for both RRR01 and RRR02. When outcomes474

were selected through a preregistered decision procedure (purple squares, Figure 5), meta-analytic mean475

estimates were generally close to the mean of the estimated multiverse distributions, and matched the476

random draw estimates well (pink crosses, Figure 5). The point estimate of the random draws is by477

definition identical to the mean of the multiverse distribution, whereas the lower/upper bounds are the478

average 95% CIs of these draws.479
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480

Figure 5. Selective reporting in labs results in overestimates in meta-analysis. Meta-analytic distribu-481

tions and estimates after excluding analytic decisions that resulted in n < 24 participants per experimental482

group at the study-level. Selection mechanism = how effect sizes were selected at the study-level, either483

by p-hacking (“Most significant,” “Bounded significant,” “Random significant,” “Below alpha,”), preregis-484

tered decisions (“preregistered”), or random selection (“Random draw”). “Random draw” and “Random485

significant” are averages across 105 draws from the meta-analytic multiverse, whereas other selection486

mechanisms are a single outcome. M = Median study multiverse size, N [lower quartile, upper quartile]487

= Median study sample sizes across their multiverses, * = effect size sign changed (RRR01, RRR02,488
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RRR05 Exit, RRR05 Neglect, RRR10) so that hypothesized effect size (and p-hacking direction) was489

positive for all meta-analyses. Code to reproduce figure: osf.io/thuyk/.490

When researcher DFs were combined with biased selection of effect sizes in labs (p-hacking), meta-491

analytic mean estimates were also more extreme in the predicted direction (Figure 5). As expected,492

selecting the most significant effect size in each lab (yellow stars) and then meta-analyzing resulted in the493

most extreme mean estimates. Other p-hacking approaches (in Figure 5: turquoise triangles, red circles,494

and green squares) resulted in similar estimates. This similarity in outcome between biased selection495

mechanisms can be mostly attributed to the low number of significant results across labs and our biased496

selection procedures resulting in the same results if there were no significant outcomes in a lab (205 / 294497

studies across all RRRs, counting labs with multiple DVs as separate studies).498

There is a tendency for projects with larger multiverses (e.g., RRR05, RRR06, and RRR07, as can be499

seen in Figure 5) to have more extreme estimated effect sizes when p-hacked. The difference between the500

average random draw (pink crosses) and the estimates based on the most significant effect sizes (yellow501

stars) ranged from 0.1 to 0.48 for SMDs and was about 0.1 for log OR. The correlation between effect502

size inflation and multiverse size was r = 0.77 for SMD effect sizes. The most extreme case corresponded503

to RRR07 (Figure 5), where the difference in meta-analytic average effect size estimate between the504

average random draw (pink cross, d = -0.03 ,95% CI [-0.13, 0.07]) and the estimate based on the most505

significant effect sizes (yellow star, d =0.45, 95% CI [0.34, 0.56]) was an increase of almost 0.5SD in the506

predicted direction. Applying publication bias correction methods (PET-PEESE, 3PSM and p-uniform*)507

did not lead to improvements in estimated average effect size estimates (Supplement H), in line with other508

research that has shown publication bias correction methods as unlikely to be useful in correcting for509

selective reporting (Carter et al., 2019; van Aert et al., 2016).510

DISCUSSION511

In this article, we performed multiverse analysis across multiple direct replication studies, using empirical512

data from ten Registered Replication Reports (RRRs). Even though the preregistrations used in the513

actual RRRs limited the effect of researcher DFs in the original analyses, the open data from these514

extensive studies enabled us to use a counter-factual design to see what biases could have emerged515

if the studies (and ensuing meta-analyses that included them) had not been preregistered and could516

have been subjected to selective reporting based on significance of the outcomes in the primary studies517

(p-hacking). We identified researcher DFs based on common decisions in the associated literature for518

each outcome variable, computed all possible outcomes across direct replications, and examined the519

variance in these so-called multiverses. We then combined effect sizes from the multiverses of each520
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direct replication in meta-analysis and examined the consequences of different mechanisms for selecting521

effect sizes for inclusion. Our analyses highlight that multiverse analyses typically yielded thousands of522

different outcomes within single studies, that multiverse patterns of variation differed across labs using523

the same protocol, and that selective reporting of outcomes in primary studies could bias meta-analytic524

results, despite their status as a ‘gold-standard’ of evidence. We also found that original sample size525

correlates at most weakly with potential for selective reporting (as measured by UMV), suggesting a larger526

sample size does not protect against selective reporting. Yet interestingly, 205 / 294 studies (counting labs527

with multiple DVs as separate studies) did not contain any significant (measured as p ≤ .05) results in528

their multiverses, suggesting p-hacking null results into significance may be more difficult than expected529

considering the sheer number of potential outcomes per study. We discuss these results and the limitations530

of our own study in the remainder of the discussion.531

Defining the multiverse532

Creating a multiverse is an inherently subjective endeavor given that researchers might disagree about533

which decisions are (approximately) equally reasonable (Steegen et al., 2016). For example, although we534

created our researcher DFs based on common practice in the associated literature, there are methodological535

arguments to carefully consider the meaning and impact of outliers, or use outlier robust statistics (e.g.,536

Rousseeuw & Hubert, 2011) rather than excluding them based on rules of thumb. In the same vein, it may537

often be preferable to perform multiple or maximum likelihood imputation (e.g., Jakobsen et al., 2017) of538

missing data points rather than excluding them. For this reason, we have endeavored to structure our data539

such that a disagreeing reader familiar with R can explore the consequence of only including those of our540

researcher DFs they consider reasonable, as demonstrated in Supplement F.541

Del Giudice & Gangestad (2021) critically discussed what it means for a researcher DF to be542

‘reasonable.’ They rightly argued why some of the researcher DFs as used in previously published543

multiverse analyses might not be equivalent on prior grounds or might not show equivalence for reasons544

yet unknown. We admit that our researcher DF S1, which deletes items in measurement scales based545

on the lowest item-rest correlations, could perhaps be non-equivalent on psychometric grounds. On546

the one hand, deletion of the item with lowest item-rest correlation could heighten the reliability of the547

scale, and hence increase genuine effects, if the deleted item were poorly performing. On the other hand,548

deletion would have little effect on the reliability and hence on actual effects if the item performed as549

well as other items in the scale. Hence, if there were some item(s) consistently performing poorly (in550

the psychometric sense) across labs in an RRR, this researcher DF could increase true effects and be551

of principled non-equivalence, at least for that RRR. Similarly, the researcher DF related to composite552

scores (S2) could create genuinely different effects under some conditions. In Supplement F, we repeated553
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our analyses without the PCA option of this researcher DF which showed less variation in outcomes, as554

expected if indeed the way composite scores are computed makes a difference. However, like all our DFs,555

we included this researcher DF because we feel that it might be used in practice in unregistered studies.556

One could also argue that multiverses with varying samples sizes are non-equivalent in the statistical557

sense of sampling variability (Del Giudice & Gangestad, 2021). Smaller sample sizes generally result in558

less statistical power to detect effects and hence larger p-values, which makes it more difficult to directly559

compare p-values across multiverses differing in sample size. We do not consider the issue of power to560

be a major concern for our study, as many of our analyses focus on effect size estimates and variability,561

and because most RRRs in our sample (apart from RRR1/RRR2, based on our reading of the original562

articles) appear to study null effects. In addition, although researcher DFs that lead to smaller sample563

sizes would increase variability of outcomes regardless of true effect size, the strong sample overlap564

between multiverse samples in a given study creates covariation between multiverses that diminishes total565

sampling variability. In the end, which multiverses are considered reasonable will depend not only on566

individual researchers’ beliefs, but also on which decisions their research community considers acceptable567

in terms of theoretical, methodological, and empirical standards (Del Giudice & Gangestad, 2021).568

Notwithstanding selective reporting, researchers should recognize that researcher DFs, or decisions569

treated as if they were researcher DFs, by themselves create another layer of uncertainty in study estimates;570

we found a median UMV of 0.1SD in our SMD data, although this will differ depending on research571

field and which DFs researchers find reasonable. As such, we advise researchers doing hypothesis-testing572

research to 1) preregister the (single) analysis they believe is optimal for testing their hypothesis, motivate573

why this is the case and report uncertainty estimates (e.g., confidence or credibility interval), and 2) include574

a multiverse analysis as a sensitivity analysis (following the advice of Del Giudice & Gangestad, 2021)575

and report their UMV. Although some may argue that preregistering a preferred analysis is contradictory576

if the options in the multiverse analysis are considered equivalent, pragmatically, we believe that most577

researcher DFs will not be exactly equivalent, and that most researchers will have a preferred analysis that578

it would be useful to accompany with a sensitivity analysis. The goal of these recommendations is for the579

research process to be transparent so that results act as credible evidence despite the potential effect of580

researcher DFs on outcomes.581

More generally, multi-lab collaboration, or regular, projects may wish to consider incorporating the582

multiverse perspective already in the design of their studies, identifying which of their decisions are583

largely arbitrary and collecting data on alternatives. Preregistration of research is likely to be helpful from584

this perspective, in addition to its transparency enhancing properties, which are helpful when evaluating a585

study for selective reporting.586
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Exploring the multiverse587

The unique design of our project enabled us to examine the effect of researcher DFs (i.e., perform588

multiverse analysis) across multiple direct replication studies. We observed that 1) the same researcher589

DFs applied to direct replication studies resulted in widely varying distributions of effect sizes, and 2)590

which researcher DF caused the variability within a study differed between direct replications. That591

is, the effect of researcher DFs both within and across direct replication studies appeared unsystematic.592

These results demonstrate that results of multiverse analysis in any single study, like other exploratory593

analyses, are not necessarily replicable in new data. We believe this point is underappreciated among many594

multiverse analysts. In addition, some researchers may be tempted to directly interpret the existence of595

researcher DFs and resulting UMV as evidence of ‘hidden moderators’ (Van Bavel et al., 2016); currently596

unknown moderators that explain why effect sizes differ between studies. However, the existence of the597

multiverse does not by itself imply moderators as substantial variability and apparent moderating effects598

may be found through sampling variance alone.599

That the effect of researcher DFs both within and across direct replication studies was generally non-600

systematic also corroborates previous findings of ours (Olsson-Collentine et al., 2020) that differences601

in study results in social and cognitive psychology show little to no between-study heterogeneity, and602

supports the conclusion that the best explanation for differences between effect sizes in (direct) replication603

studies is typically the joint effect of sampling error and researcher DFs, possibly in combination with604

selective reporting.605

When we have a substantive researcher DF that we suspect of being a moderator, it may be most606

useful to examine it from an empirical meta-analytic perspective. If we have a researcher DF at the607

study level (e.g., measurement scale) with sufficient variation between primary studies, it is possible to608

examine it as a moderator using meta-regression (e.g., Houwelingen et al., 2002). However, individual609

level researcher DFs (e.g., age) are preferably examined in individual participant data (IPD) meta-analysis610

to avoid the ecological fallacy (e.g., Stewart & Tierney, 2002). In the case of multiple dependent variables,611

which might also be a researcher DF, potential systematic differences could be examined in multivariate612

meta-analysis (e.g., Jackson et al., 2011). As with multiverse analysis, such moderator analyses should613

primarily be considered exploratory and hypothesis-generating.614

Researcher DFs in primary studies also add a layer of uncertainty to meta-analysis when those studies615

are meta-analyzed. Researcher DFs in primary studies can change both point estimates and the associated616

standard errors and can do so across multiple studies. Consequently, in meta-analysis they can influence617

not only the meta-analytic point estimate but also the between-study variance. That said, the standard618

deviations in point estimates over the meta-analytic multiverses in our meta-analyses were quite small,619
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with an UMV of at most 0.04SD amongst SMD effects. This is unsurprising: when researcher’s decisions620

are truly random and in the absence of selective reporting and publication bias, researcher DFs in primary621

studies can be expected to cancel out across a sufficiently large number of studies. As such, researcher622

DFs in primary studies (and resulting multiverses) are not a major concern for meta-analysts in the623

absence of selective reporting. Unfortunately, the availability of such ideal data is not expected in most624

meta-analyses. Even with ideal data, in a meta-analysis with a small number of primary studies, as is625

common in medicine (Davey et al., 2011), researcher DFs are less likely to balance each other out and626

meta-analytic UMV may be a larger concern.627

Encouragingly, in our data, the meta-analytic point estimates based on preregistered studies often628

fell close to the center of the meta-analytic distributions. Preregistration may generally lead to less629

effect size inflation (Schäfer & Schwarz, 2019) by decreasing the risk of selective reporting through630

increased transparency (although preregistrations are of varying quality or not always suitable, Bakker et631

al., 2020; Pham & Oh, 2021). However, the connection between multiverse analysis and preregistration632

may have been enhanced by the nature of our data: large collaborative projects, including researchers with633

adversary hypotheses, which may have resulted in a ‘wisdom of the crowd’ selection of decisions amongst634

researchers DFs. Alternatively, if no decision within a multiverse has a systematic effect, results from635

any preregistered set of decisions from that multiverse would also be expected to coincide approximately636

with the mean of the multiverse distribution when analyzed across samples. Regardless, to account for637

UMV preregistered multi-lab collaborations (e.g., Moshontz et al., 2018) may offer a way forward in the638

absence of more concrete theory (Fried, 2020), although as we saw in our results even such data is not a639

guarantee for a point estimate at the center of the meta-analytic multiverse distribution. It is important640

to be aware that a preregistered set of decisions nonetheless only represents a single universe from the641

multiverse.642

The extent of UMV in any given field depends on the multiverse created, and our estimates in this643

study may only apply to our non-random sample of social and cognitive psychology research. UMV in644

other fields could be either larger or smaller, but is unlikely to be non-existent, and it may be worthwhile to645

study the UMV in different subfields to examine their susceptibility to selective reporting given normative646

research behavior. Generally, the extent of bias introducible by selective reporting will depend on the647

multiverse size and the UMV, and researcher DFs that affect these two factors to a larger extent will hence648

contribute more risk of bias to a study.649

Selecting from the multiverse650

We do not mean to imply that exploration of researcher DFs are problematic per se. We view it as651

important to study the robustness of conclusions in the context of a sensitivity analysis, of which a652
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multiverse analysis can be seen as an extensive (systematic) variant. Exploring factors that truly moderate653

an effect or association can be valuable as long as the exploration is transparently reported and employs654

rigorous statistical controls to guard against overfitting. What is problematic is the selective or incomplete655

reporting from the multiverse of statistical results. Hence, it is important to evaluate studies for risk of656

selective reporting when using them to make decisions (e.g., about setting up future research), or including657

them in systematic reviews (Appelbaum et al., 2018; as recommended by e.g., PRISMA and MARS:658

Moher et al., 2009). Both preregistrations and multiverse analyses will facilitate evaluation of a study’s659

selective reporting risk by making research decisions more transparent, and there are many selective660

reporting protocols available (e.g., Page et al., 2018) that may assist in the evaluation.661

There is a risk that researchers exploit (intentionally or not) researcher DFs to selectively report those662

results from the multiverse that most strongly support their hypothesis. In extreme cases researcher DFs663

and p-hacking can provide evidence for any desired conclusion; in one lab the effect size estimate changed664

by as much as d = 1.27. More realistically, we found a median UMV of 0.1SD amongst 294 studies665

(counting labs with multiple DVs as separate studies). Nonetheless, a median UMV of 0.1SD in a field666

still implies that selective reporting can turn a statistically non-significant effect into a significant effect.667

For many studies in our data this was not a concern. We found that in our data and given our researcher668

DFs, about 70% of study multiverses did not contain a single significant result (measured as p < .05) in669

the hypothesized direction. As most RRRs that made up our data had overall effect size estimates (based670

on preregistered outcomes) not significantly different from zero, this coincides with previous findings671

of ours that on average null results also tend to have very little heterogeneity (Olsson-Collentine et al.,672

2020). This suggests that it may be more difficult to p-hack null results into significance than many expect.673

We caution that this observation may no longer hold when applying other types of researcher DFs than674

we were able to do (e.g., this may not apply when researcher DF options are less correlated, as in the675

case of outcome switching), and that 30% of labs did contain multiverses with a mix of significant and676

non-significant effect size estimates.677

Relatedly, we found a correlation not significantly different from zero between sample size and678

potential for selective reporting (as measured by UMV). This implies that sample size should not be679

taken to be protective against selective reporting, as also corroborated by a simulation study by Stefan &680

Schönbrodt (2022). We do note, however, that for genuine effects, larger sample sizes would increase681

power thereby lowering the need to selectively report outcomes based on the multiverse and hence less682

ensuing bias in estimated effects (Bakker et al., 2012).683

Our counter-factual design allowed us to see what biases could have emerged if the studies (and684

ensuing meta-analyses) had not been preregistered and could have been subjected to selective reporting685
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based on significance of the outcomes in the primary studies, as is the case for most meta-analyses. Our686

analyses demonstrate the substantial bias in the hypothesized direction that may be incorporated into687

meta-analytic effect size estimates due to selective reporting in primary studies. The possible inflation688

of average effect size will depend on the proportion of meta-analyzed studies at risk of bias and the689

strength of this bias. Evidence from Kvarven et al. (2019) based on social and cognitive psychology690

research suggests meta-analyses may sometimes estimate effect sizes to be as much as a third larger691

than in comparable multi-lab projects, although this also includes publication bias. Larger or smaller692

differences may be more typical in other fields.693

For meta-analysts using retrospective data, minimizing the risk of bias in their included data (i.e., by694

only including preregistered data and evaluating it for selective reporting) may be the best option until the695

practices of multiverse analysis or the sharing of raw data become widespread. Our results corroborate696

recommendations from meta-analysis reporting protocols such as PRISMA and MARS (Appelbaum et al.,697

2018; Moher et al., 2009) to always evaluate primary studies for risk of bias (here, selective reporting),698

and we advise meta-analysts to study differences in outcome between studies identified as at high risk of699

selective reporting bias and those at low risk. In line with previous research on the topic (Carter et al.,700

2019; van Aert et al., 2016), our supplemental results show that existing publication bias methods should701

not be relied on to correct for p-hacking.702

The large variance in impact of researcher DFs across direct replication studies demonstrates that the703

study-specific effect of a researcher DF, and related bias induced by selective reporting, is difficult to704

predict and dependent on sampling error. Stefan & Schönbrodt (2022), who simulated the effects of many705

different p-hacking methods in single studies, reach a similar conclusion in their simulations: “Apart from706

the aggressiveness of p-hacking itself, our simulations showed that across all strategies, the severity of707

p-hacking also depends on the environment in which p-hacking takes place, for example, the correlation708

structure in the data” (p. 46). Our results using the RRR data indeed show that the correlations between709

multiverses create variation that is generally smaller than the sampling variation one would expect under710

independent sampling.711

That is not to say that we cannot draw some conclusions about the expected (average) impact of712

p-hacking different researcher DFs. The potential for effect size bias is larger when studies allow more713

analyses to be run and when more variance is created by included researcher DFs. Supplement G714

demonstrates that more overlapping (sub)samples created using alternative exclusions based on age715

created less subsequent UMV, which is expected given that more overlap creates higher correlations716

between alternative outcomes. As such, when considering effect size bias, we should (typically) be more717

concerned about researcher DFs in which the options are less correlated, although high false positive rates718
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are possible in either case (see discussion by Friese & Frankenbach, 2020).719

It may be insightful to do more complex modelling of selective reporting from a multiverse perspective,720

including of non-intentional selective reporting, and we hope our data will also be useful to other721

researchers interested in more complex modelling of research bias. Our modelling of it in this study was722

relatively straightforward and we only attempted to model the outcomes of intentional selective reporting723

(p-hacking). Nonetheless, our biased selection methods applied to empirical RRR data are similar to those724

used in the simulations of a recent compendium of p-hacking methods (Stefan & Schönbrodt, 2022) and725

are on par with other recent simulation studies of p-hacking in meta-analysis (Botella et al., 2021; Friese726

& Frankenbach, 2020).727

Contrary to these two simulation studies (Botella et al., 2021; Friese & Frankenbach, 2020) we found728

that p-hacking with actual data and using fairly generic researcher DFs could cause substantial inflation729

of meta-analytic average effect sizes also when the average effect appears to be null. Both Friese &730

Frankenbach (2020) and Botella et al. (2021) run extensive simulation studies of the effect of p-hacking731

across many conditions and Friese & Frankenbach (2020) consider how it interacts with publication bias,732

something we did not do. We believe the difference in results is due the choice in both of these simulation733

studies to p-hack results based on the common assumption that p-hacking leads to a peak of p-values734

below 0.05 (Hartgerink, 2017). In the case of Friese & Frankenbach (2020), results were p-hacked to735

a distribution with a mode of p = 0.049, and Botella et al. (2021), similarly p-hacked studies into the736

region .025 < p ≤ .05. We know from previous studies that the type of p-hacking matters; incremental737

methods such as optional stopping that result in a peak below p = .05 have little effect on effect size738

inflation, whereas methods such as outcome reporting bias have a large effect and do not result in a739

peak (Francis, 2012; Kirkham et al., 2010; Stefan & Schönbrodt, 2022). As such, differences between740

our results and these simulation studies are likely explained by the incremental p-hacking methods used741

in these simulation studies as compared to our methods of selecting the lowest p-values or randomly742

selecting one of the significant outcomes.743

Unfortunately, there exists little evidence on which method of selection researchers use in practice.744

Incremental p-hacking can still lead to concerning numbers of false positive results, as discussed by745

both Friese & Frankenbach (2020) and Botella et al. (2021), and it is important to discuss that not all746

types of p-hacking lead to concerning levels of effect size inflation. Nonetheless, our results show that747

suggesting selective reporting is not a concern for meta-analytic results is inaccurate when considering748

non-incremental p-hacking based on researcher DFs that we consider to be widely applicable across a749

range of empirical studies.750

Under some assumptions related to correlational structure of the overlapping data across multiverses,751
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we can be confident that the UMV and hence the potential bias due to selective reporting in a study is less752

than the reported standard error. The effect sizes in a multiverse are dependent because they are based on753

the same sample. Due to this dependence, the UMV will normally be smaller than the standard error in754

a study for a fixed sample size and statistical model, since the variability based on independent data is755

larger than of dependent data. In other words, if we know that the statistical model and sample size have756

not changed in a study, and that there is no publication bias, then we can be confident that the UMV in757

that study is less than its standard error estimate.758

Consequently, at a fixed standard error the possible bias is always larger with publication bias than759

with selective reporting due to the dependency between effect sizes in the multiverse. This suggests760

that while p-hacking is likely more common than publication bias in the literature, being more resource761

efficient, the distortion in the literature may be larger from publication bias when it does occur. Finally,762

we note that the correlation between effect sizes within a multiverse also means that the independent763

sample false positive rate (typically .05) should be expected to be lower when sampling effect sizes within764

a dataset. We can observe this in our funnel plots, where substantially fewer than 1/20 effect sizes are765

significant for most labs (i.e., fall outside the funnel lines).766

Limitations and constraints on generality767

Although we have attempted to accompany all our claims and findings in this article together with their768

caveats, we wish to make explicit the limits of generalizability of claims based on the data and design769

of our study. The included effects are neither a representative nor a random sample of effects from770

psychology. We expect our conclusions to be robust for effects in social and cognitive psychology, but771

specific values that we report (e.g., median UMV of 0.1 among SMD effect sizes) may not generalize772

beyond our sample. The RRRs in our data overwhelmingly reported average results not significantly773

different from zero (the exception being RRR1/RRR2). This allowed us to examine selective reporting774

in its most critical context (i.e., in the likely absence of genuine effects), but means it would be good to775

focus future research efforts on studying multiverses with non-null effects, as these likely create more776

heterogeneity in results across labs (see Olsson-Collentine et al., 2020), and hence we would also expect777

larger overall variability and UMV due to researcher DFs (see also Friese & Frankenbach, 2020). During778

the process of this project new RRRs have been published some of which report non-null effects and could779

be used for such further analyses (e.g., Elliott et al., 2021). In addition, we are aware of several projects780

currently in progress with similar designs that will collect new data and provide additional evidence on781

the impact of standard researcher DFs in different fields.782

Researchers interested in the theoretical implications of the specific effects studied here should783

carefully consider which researcher DFs they find reasonable (see Del Giudice & Gangestad, 2021)784
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before drawing conclusions. Our researcher DFs were chosen to match standard decisions in social and785

cognitive psychology treated as researcher DFs, meaning they were not guided by the substantive theory786

of the studied effects, except as reflected by decisions made by the RRRs in data collection and analysis.787

Moreover, if for instance age is theoretically expected to moderate an effect it should preferably be tested788

formally instead of being used in a multiverse analysis. van Aert (2022) demonstrated how this can be789

done by looking at the effect of age across labs in RRR9 (McCarthy et al., 2018) using IPD meta-analysis,790

finding a small positive interaction (p = .038). Individual studies often do not have the power to detect791

moderating effects, which also affects multiverse analyses.792

We found that in only about 30% of studies did significant effect sizes in the hypothesized direction793

emerge in their multiverses, despite the typically thousands of analyses in every study. This finding794

suggests it is more difficult to turn apparent null results into significant results than might be expected795

but is dependent on our selection of researcher DFs. Although we implemented an extensive number of796

researcher DFs that we consider representative of researcher DFs that could be used in practice across a797

range of social and cognitive psychological studies, our use of secondary (real) data means there were798

many researcher DFs (e.g., Wicherts et al., 2016) that we could not apply but that might be applied in799

real situations (e.g., outcome switching, which is known to have a large impact, or changing the analytic800

model). As such, our selection of DFs and the resulting multiverse variances are unlikely to represent a801

worst-case scenario. It is feasible that in real life more extreme statistical results are found. Generally, we802

can expect researcher DFs with lower correlation between options, because of less sample overlap and/or803

weaker correlations between (in)dependent variables, to result in larger multiverse variance.804

Finally, it may be informative to analyze other multi-lab replications studies than those we included in805

our study such as Many Labs 1 – 5 (e.g., Klein et al., 2018). The studies in our sample (mostly) studied a806

single effect across multiple labs, whereas the Many Labs projects study many effects at the same time807

across multiple labs. We examined the RRRs to be able to apply study-unique researcher DFs, but the808

Many Labs design would allow examining the impact of applying a single set of researcher DFs on a large809

sample of effects from social and cognitive psychology.810

Conclusion811

We have shown that researcher degrees of freedom offer a wide array of potential outcomes in relatively812

standard psychological studies and demonstrated how selective reporting based on these researcher degrees813

of freedom creates bias in meta-analytic effect size estimates that may undermine the credibility of many814

meta-analyses. Preregistration is a methodological solution to researcher degrees of freedom enabling815

selective reporting, whereas a statistical solution is to perform multiverse analysis of results. These two816

transparency-enhancing practices can also be applied together, although our analyses of multiverses across817
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direct replications highlight that multiverse analyses in single studies should not necessarily be expected to818

replicate in new data. Due to dependencies between effect sizes within multiverses, exploring multivariate819

approaches to multiverse analysis may be a useful next step in helping to address uncertainties and biases820

in primary studies due to researcher degrees of freedom.821
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R., Blatz, L., Charman, S. D., Claesen, A., Clay, S. L., . . . Yıldız, E. (2018). Registered Replication979

Report on Srull and Wyer (1979). Advances in Methods and Practices in Psychological Science, 1(3),980

39/44

https://doi.org/10.1002/sim.4172
https://doi.org/10.1186/s12874-017-0442-1
https://doi.org/10.1186/s12874-017-0442-1
https://doi.org/10.1186/s12874-017-0442-1
https://doi.org/10.1177/0956797611430953
https://doi.org/10.1177/0956797611430953
https://doi.org/10.1177/0956797611430953
https://doi.org/10.1207/s15327957pspr0203_4
https://doi.org/10.1136/bmj.c365
https://doi.org/10.1177/2515245918810225
https://doi.org/10.1177/2515245918810225
https://doi.org/10.1177/2515245918810225
https://doi.org/10.1038/s41562-019-0787-z
https://doi.org/10.1038/s41562-019-0787-z
https://doi.org/10.1038/s41562-019-0787-z
https://doi.org/10.1093/jnci/dji184
https://doi.org/10.1093/jnci/dji184
https://doi.org/10.1093/jnci/dji184
https://doi.org/10.1080/03630242.2017.1421287


321–336. https://doi.org/10.1177/2515245918777487981

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). Preferred Reporting Items for982

Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine, 6(7), e1000097.983

https://doi.org/10.1371/journal.pmed.1000097984

Moshontz, H., Campbell, L., Ebersole, C. R., IJzerman, H., Urry, H. L., Forscher, P. S., Grahe, J.985

E., McCarthy, R. J., Musser, E. D., Antfolk, J., Castille, C. M., Evans, T. R., Fiedler, S., Flake,986

J. K., Forero, D. A., Janssen, S. M. J., Keene, J. R., Protzko, J., Aczel, B., . . . Chartier, C. R.987

(2018). The Psychological Science Accelerator: Advancing Psychology Through a Distributed988

Collaborative Network. Advances in Methods and Practices in Psychological Science, 1(4), 501–515.989

https://doi.org/10.1177/2515245918797607990

Nickerson, R. S. (1998). Confirmation Bias: A Ubiquitous Phenomenon in Many Guises. Review of991

General Psychology, 2(2), 175–220. https://doi.org/10.1037/1089-2680.2.2.175992

O’Donnell, M., Nelson, L. D., Ackermann, E., Aczel, B., Akhtar, A., Aldrovandi, S., Alshaif, N.,993

Andringa, R., Aveyard, M., Babincak, P., Balatekin, N., Baldwin, S. A., Banik, G., Baskin, E., Bell,994

R., Białobrzeska, O., Birt, A. R., Boot, W. R., Braithwaite, S. R., . . . Zrubka, M. (2018). Registered995

Replication Report: Dijksterhuis and van Knippenberg (1998): Perspectives on Psychological Science,996

13(2), 268–294. https://doi.org/10.1177/1745691618755704997

Olsson-Collentine, A., Wicherts, J., Bakker, M., & Aert, R. C. M. van. (2019). Meta multiverse OSF998

repository. https://osf.io/j8yg2/999

Olsson-Collentine, Anton, Wicherts, Jelte, Bakker, Marjan, & van Aert, Robbie. (2022). Meta multiverse1000

replication material [Data set]. Zenodo. https://doi.org/10.5281/zenodo.73412921001

Olsson-Collentine, A., Wicherts, J. M., & van Assen, M. A. L. M. (2020). Heterogeneity in direct1002

replications in psychology and its association with effect size. Psychological Bulletin, 146(10),1003

922–940. https://doi.org/10.1037/bul00002941004

Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional manipulation checks: Detecting1005

satisficing to increase statistical power. Journal of Experimental Social Psychology, 45(4), 867–872.1006

https://doi.org/10.1016/j.jesp.2009.03.0091007

Page, M. J., McKenzie, J. E., & Higgins, J. P. T. (2018). Tools for assessing risk of reporting biases1008

in studies and syntheses of studies: A systematic review. BMJ Open, 8(3), e019703. https:1009

//doi.org/10.1136/bmjopen-2017-0197031010

Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2020). Investigating and dealing with1011

publication bias and other reporting biases in meta-analyses of health research: A review. Research1012

Synthesis Methods, 12, 248–259. https://doi.org/10.1002/jrsm.14681013

40/44

https://doi.org/10.1177/2515245918777487
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1177/2515245918797607
https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.1177/1745691618755704
https://osf.io/j8yg2/
https://doi.org/10.5281/zenodo.7341292
https://doi.org/10.1037/bul0000294
https://doi.org/10.1016/j.jesp.2009.03.009
https://doi.org/10.1136/bmjopen-2017-019703
https://doi.org/10.1136/bmjopen-2017-019703
https://doi.org/10.1136/bmjopen-2017-019703
https://doi.org/10.1002/jrsm.1468


Palpacuer, C., Hammas, K., Duprez, R., Laviolle, B., Ioannidis, J. P. A., & Naudet, F. (2019). Vibration1014

of effects from diverse inclusion/exclusion criteria and analytical choices: 9216 different ways to1015

perform an indirect comparison meta-analysis. BMC Medicine, 17(1), 174. https://doi.org/1016

10.1186/s12916-019-1409-31017

Patel, C. J., Burford, B., & Ioannidis, J. P. A. (2015). Assessment of vibration of effects due to model1018

specification can demonstrate the instability of observational associations. Journal of Clinical Epi-1019

demiology, 68(9), 1046–1058. https://doi.org/10.1016/j.jclinepi.2015.05.0291020

Pham, M. T., & Oh, T. T. (2021). Preregistration Is Neither Sufficient nor Necessary for Good Science.1021

Journal of Consumer Psychology, 31(1), 163–176. https://doi.org/10.1002/jcpy.12091022

Pigott, T. D., Valentine, J. C., Polanin, J. R., Williams, R. T., & Canada, D. D. (2013). Outcome-Reporting1023

Bias in Education Research. Educational Researcher, 42(8), 424–432. https://doi.org/10.1024

3102/0013189X135071041025

R Core Team. (2020). R: A language and environment for statistical computing [Manual]. R Foundation1026

for Statistical Computing. https://www.R-project.org/1027

Rankin, J., Ross, A., Baker, J., O’Brien, M., Scheckel, C., & Vassar, M. (2017). Selective outcome1028

reporting in obesity clinical trials: A cross-sectional review: Reporting outcomes in obesity clinical1029

trials. Clinical Obesity, 7(4), 245–254. https://doi.org/10.1111/cob.121991030

Revelle, W. (2020). Psych: Procedures for psychological, psychometric, and personality research1031

[Manual]. https://CRAN.R-project.org/package=psych1032

Robinson, D., Hayes, A., & Couch, S. (2020). Broom: Convert statistical objects into tidy tibbles1033

[Manual]. https://CRAN.R-project.org/package=broom1034

Roese, N. J., & Vohs, K. D. (2012). Hindsight Bias. Perspectives on Psychological Science, 7(5), 411–426.1035

https://doi.org/10.1177/17456916124543031036

Rombach, I., Rivero-Arias, O., Gray, A. M., Jenkinson, C., & Burke, Ó. (2016). The current practice of1037
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