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Abstract
Scientific theories can often be formulated using equality and order constraints on the relative effects in a linear regression
model. For example, it may be expected that the effect of the first predictor is larger than the effect of the second predictor,
and the second predictor is expected to be larger than the third predictor. The goal is then to test such expectations against
competing scientific expectations or theories. In this paper, a simple default Bayes factor test is proposed for testing
multiple hypotheses with equality and order constraints on the effects of interest. The proposed testing criterion can be
computed without requiring external prior information about the expected effects before observing the data. The method is
implemented in R-package called ‘lmhyp’ which is freely downloadable and ready to use. The usability of the method and
software is illustrated using empirical applications from the social and behavioral sciences.

Keywords Bayes factors · Bayesian hypothesis testing · Equality and order constraints · Regression modeling

Introduction

The linear regression model is the most widely used
statistical method for assessing the relative effects of
a given set of predictors on a continuous outcome
variable. This assessment of the relative effects is an
essential part when testing, fine-graining, and building
scientific theories. For example, in work and organizational
psychology, the regression model has been used to better
understand the effects of discrimination by coworkers
and managers on workers’ well-being (Johnson et al.,
2012); in sociology to assess the effects of the different
dimensions of socioeconomic status on one’s attitude
towards immigrants (Scheepers, Gijsberts, & Coenders,
2002); and in experimental psychology to make inferences
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regarding the effects of gender when hiring employees
(Carlsson & Sinclair, 2017). Despite the extensive literature
on statistical tools for linear regression analysis, methods
for evaluating multiple hypotheses with equality and order
constraints on the relative effects in a direct manner are still
limited. This paper presents a Bayes factor testing procedure
with accompanying software for testing such hypotheses
with the goal of aiding researchers in the development and
evaluation of scientific theories.

As an example, let us consider the following linear
regression model where a dependent variable is regressed
on three predictor variables, say, X1, X2, and X3:

yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi,

where yi is the dependent variable of the i-th observation,
Xi,k denotes the k predictor variable of the i-th observation,
βk is the regression coefficient of the k-th predictor, for
k = 1, . . . , 3, β0 is the intercept, and εi are independent
normally distributed errors with unknown variance σ 2, for
i = 1, . . . , n.

In exploratory studies, the interest is typically whether
each predictor has an effect on the dependent variable, and if
there is evidence of a nonzero effect, we would be interested
in whether the effect is positive or negative. In the proposed
methodology, such an exploratory analysis can be executed
by simultaneously testing whether an effect is zero, positive,
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or negative. For the first predictor, the exploratory multiple
hypothesis test would be formulated as

H0 : β1 = 0

H1 : β1 > 0 (1)

H2 : β1 < 0.

The proposed Bayes factor test will then provide a default
quantification of the relative evidence in the data between
these hypotheses.

In confirmatory studies, the interest is typically in testing
specific hypotheses with equality and order constraints
on the relative effects based on scientific expectations
or psychological theories (Hoijtink, 2011). Contrasting
regression effects against each other using equality or order
constraints can be more informative than interpreting them
at certain benchmark values (e.g., standardized effects of .2,
.5, and 1, are sometimes interpreted as ‘small’, ‘medium’,
and ‘large’ effects, respectively) because effects are not
absolute but relative quantifications; relative to each other
and relative to the scientific field and context (Cohen, 1988).
For example, a standardized effect of .4 may be important
for an organizational psychologist who is interested in the
effect of discrimination on well-being on the work floor but
less so for a medical psychologist who wishes to predict
the growth of a tumor of a patient through a cognitive
test. As such, interpreting regression effects relative to
each other using equality and order constraints would be
more insightful than interpreting the effects using fixed
benchmarks.

In the above regression model for instance, let us
assume that β1, β2, and β3 denote the effects of a strong,
medium, and mild treatment, respectively. It may then be
hypothesized that the effect of the strong treatment is larger
than the effect of the medium treatment, the effect of the
medium treatment is expected to be larger than the effect
of the mild treatment, and all effects are expected to be
positive. Alternatively, it may be expected that all treatments
have an equal positive effect. These hypotheses can then
be tested against a third hypothesis which complements
the other hypotheses. This comes down to the following
multiple hypothesis test:

H1 : β1 > β2 > β3 > 0

H2 : β1 = β2 = β3 > 0 (2)

H3 : neither H1, nor H2.

Here the complement hypothesis H3 covers the remaining
possible values of β1, β2, and β3 that do not satisfy the
constraints under H1 and H2. Subsequently, the interest is
in quantifying the relative evidence in the data for these
hypotheses.

A general advantage of Bayes factors for testing statis-
tical hypotheses is that we obtain a direct quantification

of the evidence in the data in favor of one hypothesis
against another hypothesis. Furthermore, Bayes factors can
be translated to the posterior probabilities of the hypotheses
given the observed the data and the hypotheses of inter-
est. These probabilities give a direct answer to the research
question which hypothesis is most likely to be true and to
what degree given the data. These posterior probabilities can
be used to obtain conditional error probabilities of draw-
ing an incorrect conclusion when ‘selecting’ a hypothesis in
light of the observed data. These and other properties have
greatly contributed to the increasing popularity of Bayes
factors for testing hypotheses in psychological research
(Mulder & Wagenmakers, 2016).

The proposed testing criterion is based on the prior
adjusted default Bayes factor (Mulder, 2014b). The method
has various attractive properties. First, the proposed Bayes
factor has an analytic expression when testing hypotheses
with equality and order constraints in a regression model.
Thus, computationally demanding numerical approxima-
tions can be avoided, resulting in a fast and simple test.
Furthermore, by allowing users to formulate hypotheses
with equality as well as ordinal constraints, a broad class
of hypotheses can be tested in an easy and direct manner.
Another useful property is that no proper (subjective) prior
distribution needs to be formulated based on external prior
knowledge, and therefore the method can be applied in an
automatic fashion. This is achieved by adopting a fractional
Bayes methodology (O’Hagan, 1995) where a default prior
is implicitly constructed using a minimal fraction of the
information in the observed data and the remaining (max-
imal) fraction is used for hypothesis testing (Gilks, 1995).
This default prior is then relocated to the boundary of the
constrained space of the hypotheses. In the confirmatory test
about the unconstrained default prior for (β1, β3, β3) would
be centered around 0. Because this Bayes factor can be
computed without requiring external prior knowledge, it is
called a ‘default Bayes factor’. Thereby, these default Bayes
factors differ from regular Bayes factors where a proper
prior is specified reflecting the anticipated effects based on
external prior knowledge (e.g., Rouder & Morey, 2015).
Other default Bayes factors that have been proposed in the
literature are the fractional Bayes factor (O’Hagan, 1995),
the intrinsic Bayes factor (Berger & Pericchi, 1996), and the
Bayes factor based on expected-posterior priors (Pérez &
Berger, 2002; Mulder et al., 2009).

Although various alternative testing procedures are
available for hypothesis testing for linear regression
analysis, these methods are limited to some degree. First,
classical significance tests are only suitable for testing a null
hypothesis against a single alternative, and unsuitable for
testing multiple hypotheses with equality as well as order
constraints (Silvapulle & Sen, 2004). Second, traditional
model comparison tools (e.g., the AIC, BIC, or CFI) are
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generally not suitable for evaluating models (or hypotheses)
with order constraints on certain parameters (Mulder
et al. 2009; Braeken, Mulder, & Wood, 2015). Third,
currently available Bayes factor tests cannot be used for
testing order hypotheses (Rouder & Morey, 2015), are not
computationally efficient (Mulder, Hoijtink, & de Leeuw,
2012; Kluytmans, van de Schoot, Mulder, & Hoijtink,
2012), or are based on large sample approximations (Gu,
Mulder, & Hoijtink, 2018). The proposed Bayes factor, on
the other hand, can be used for testing hypotheses with
equality and/or order constraints, is very fast to compute
due to its analytic expression, and is an accurate default
quantification of the evidence in the data in the case of
small to moderate samples because it does not rely on
large sample approximations. Other important properties of
the proposed methodology are its large sample consistent
behavior and its information consistent behavior (Mulder,
2014b; Böing-Messing & Mulder, 2018).

The Bayesian test is implemented in the R-package
‘lmhyp’, which is freely downloadable and ready for use in
R. The main function ‘test hyp’ needs a fitted modeling
object using the ‘lm’ function together with a string that
formulates a set of hypotheses with equality and order
constraints on the regression coefficients of interest. The
function computes the Bayes factors of interest as well as
the posterior probabilities that each hypothesis is true after
observing the data.

The paper is organized as follows. Section “A default
Bayes factor for equality and order hypotheses in a linear
regression model” presents the derivation of the default
Bayes factor between hypotheses with equality and order
hypotheses on the relative effects in a linear regression
model. Section “Software” presents the ‘lmhyp’ package
and explains how it can be used for testing scientific expec-
tations in psychological research. Section “Application
of the new testing procedure using the software package
‘lmhyp’” shows how to apply the new procedure and
software for testing scientific expectations in work and orga-
nizational psychology and social psychology. The paper
ends with a short discussion.

A default Bayes factor for equality and order
hypotheses in a linear regressionmodel

Model and hypothesis formulation

For a linear regression model,

y = Xβ + N(0, σ 2In), (3)

where y is a vector of length n of outcome variables, X is a
n × k matrix with the predictor variables, and β is a vector
of length k containing the regression coefficients, consider

a hypothesis with equality and inequality constraints on
certain regression coefficients of the form

Ht : REβ = rE & RIβ > rI , (4)

where [RE |rE] and [RI |rI ] are the augmented matrices
with qE and qI rows that contain the coefficients of the
equality and inequality constraints, respectively, and k + 1
columns. For example, for the regression model from the
introduction, with β = (β0, β1, β2, β3)

′, and the hypothesis
H1 : β1 > β2 > β3 > 0 in Eq. 2, the augmented matrix of
the inequalities is given by

[RI |rI ] =
⎡
⎣
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 0

⎤
⎦

and for the hypothesis H2 : β1 = β2 = β3 > 0, the
augmented matrices are given by

[RE |rE] =
[
0 1 −1 0 0
0 0 1 −1 0

]

[RI |rI ] = [
0 0 0 1 0

]

The prior adjusted default Bayes factor will be derived
for a constrained hypothesis in Eq. 4 against an uncon-
strained alternative hypothesis, denoted by Hu : β ∈ R

k ,
with no constraints on the regression coefficients. First, we
transform the regression coefficients as follows

ξ =
[

ξE

ξ I

]
=

[
RE

D

]
β = Tβ, (5)

where D is a (k − qE) × k matrix consisting of the unique
rows of Ik − R′

E(RERE)−1RE . Thus, ξE is a vector of
length qE and ξ I is a vector of length k−qE . Consequently,
model (3) can be written as

y = XR−1
E ξE + XD−1ξ I + N(0, σ 2In),

because

Xβ =XT−1ξ =X
[
R−1

E D−1
] [

ξE

ξ I

]
=XR−1

E ξE+XD−1ξ I ,

where R−1
E and D−1 are the (Moore–Penrose) generalized

inverse matrices of RE and D, and the hypothesis in Eq. 4
can be written as

Ht : ξE = rE & R̃I ξ I > r̃I , (6)

because

REβ =RET−1ξ =RE

[
R−1

E D−1
]
ξ =[

IqE
0
]
ξ =ξE = rE

and

RI β =RIT−1ξ =RI

[
R−1

E D−1
] [

rE

ξ I

]
=RIR

−1
E rE + RID−1ξ I > rI

⇔ R̃I ξ I > r̃I , with r̃I = rI − RIR
−1
E rE and R̃I = RID−1.
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A default Bayes factor for testing hypotheses

The Bayes factor for hypothesis H1 against H2 is defined as
the ratio of their respective marginal likelihoods,

B12 = p1(y)
p2(y)

.

The marginal likelihood quantifies the probability of the
observed data under a hypothesis (Jeffreys, 1961; Kass &
Raftery, 1995). For example, if B12 = 10 this implies that
the data were ten times more likely to have been observed
under H1 than under H2. Therefore, the Bayes factor can
be seen as a relative measure of evidence in the data
between two hypotheses. The marginal likelihood under a
constrained hypothesisHt in Eq. 4 is obtained by integrating
the likelihood over the order constrained subspace of the
free parameters weighted with the prior distribution,

pt (y) =
∫∫

RI β>rI
pt (y|β, σ 2)πt (β, σ 2)dβdσ 2, (7)

where pt (y|β, σ 2) denotes the likelihood of the data under
hypothesis Ht given the unknown model parameters, and πt

denotes the prior distribution of the free parameters under
Ht . The prior quantifies the plausibility of possible values
that the model parameters can attain before observing the
data.

Unlike in Bayesian estimation, the choice of the prior can
have a large influence on the outcome of the Bayes factor.
For this reason, ad hoc or arbitrary prior specification should
be avoided when testing hypotheses using the Bayes factor.
However, specifying a prior that accurately reflects one’s
uncertainty about the model parameters before observing
the data can be a time-consuming and difficult task (Berger,
2006). A complicating factor in the case of testing multiple,
say, 3 or more, hypotheses, is that priors need to be carefully
formulated for the free parameters under all hypotheses
separately. Because noninformative improper priors also
cannot be used when computing marginal likelihoods, there
has been increasing interest in the development of default
Bayes factors where ad hoc or subjective prior specification
is avoided. In these default Bayes factors, a proper default
prior is often (implicitly) constructed using a small part of
the data while the remaining part is used for hypothesis
testing. An example is the fractional Bayes factor (O’Hagan,
1995) where the marginal likelihood is defined by

pt (y) =
∫∫

RI β>rI
pt (y|β, σ 2)1−bπt (β, σ 2|yb)dβdσ 2,

(8)

where the (subjective) proper prior in Eq. 7 is replaced by
a proper default prior based on a (minimal) fraction “b” of

the observed data,1 and the likelihood is raised to a power
equal to the remaining fraction “1 − b”, which is used for
hypothesis testing.

In this paper, an adjustment of fractional Bayes factor
is considered where the default prior is centered on the
boundary (or null value) of the constrained space. The
motivation for this adjustment is twofold. First, when testing
a precise hypothesis, say, H0 : β = 0 versus H1 : β �= 0,
Jeffreys argued that a default prior for β under H1 should
be concentrated around the null value because, if the null
would be false, the true effect would likely to be close
to the null, otherwise there would be no point in testing
H0. Second, when testing hypotheses with inequality or
order constraints, the prior probability that the constraints
hold serves as a measure of the relative complexity (or
size) of the constrained space under a hypothesis (Mulder,
Hoijtink, & Klugkist, 2010). This quantification of relative
complexity of a hypothesis is important because the Bayes
factor balances fit and complexity as an Occam’s razor. This
implies that simpler hypotheses (i.e., hypotheses having
“smaller” parameter spaces) would be preferred over more
complex hypotheses in the case of an approximately equal
fit. Only when centering the prior at 0 when testing H1 :
β < 0 versus H2 : β > 0, both hypotheses would be
considered as equally complex with prior probabilities of .5
corresponding to half of the complete parameter space of β

of all real values (R).
Given the above considerations, the fractional Bayes

factor is adjusted such that the default prior is (i) centered
on the boundary of the constrained parameter space and
(ii) contains minimal information by specifying a minimal
fraction. Because the model consists of k + 1 unknown
parameters (k regression coefficients and an unknown error
variance), a default prior is obtained using a minimal
fraction2 of b = k+1

n
.

In order to satisfy the prior property (i) when testing a
hypothesis (6), the prior for β under the alternative should
thus be centered at R−1r, where R′ = [R′

E R′
I ] and r′ =

(r′
E, r′

I ), which is equivalent to centering the prior for ξ at

μ0 = (μ0
E

′
, μ0

I

′
)′ = TR−1r = (r′

E, μ0′
I )′, with R̃Iμ

0
I =

r̃I . The following lemma gives the analytic expression of
the default Bayes factor of a hypothesis with equality and
order constraints on the regression coefficients versus an
unconstrained alternative.

1The proper default prior in Eq. 8 is obtained by updating the nonin-
formative improper (independence) Jeffreys’ prior, πN(β, σ 2) ∝ σ−2,
with a fraction b of the data: πt (β, σ 2|yb) ∝ πN(β, σ 2)ft (y|β, σ 2)b

(Gilks, 1995).
2Updating the noninformative Jeffreys prior πN(β, σ ) ∝ σ−2 with a
sample of k+1 observations yields a proper marginal distribution for β
having a multivariate Student’s t distribution with 1 degree of freedom,
which is equivalent to a multivariate Cauchy distribution.
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Lemma 1 The prior adjusted default Bayes factors for an
equality-constrained hypothesis, H1 : REβ = rE , an order-
constrained hypothesis, H2 : RIβ > rI , and a hypothesis
with equality and order constraints, H3 : REβ = rE ,
RIβ > rI , against an unconstrained hypothesis Hu : β ∈
R

k are given by

B1u = f E
1

cE
1

= t (rE;RE β̂, s2(n − k)−1RE(X′X)−1R′
E, n − k)

t (rE; rE, s2RE(X′X)−1R′
E, 1)

, (9)

B2u = f I
2

cI
2

= Pr(RI β > rI |y, Hu)

Pr(RI β > rI |yb, Hu)
, (10)

B3u = f E
3

cE
3

× f
I |E
3

c
I |E
3

= t (rE;RE β̂, s2(n−k)−1RE(X′X)−1R′
E, n−k)

t (rE; rE, s2RE(X′X)−1R′
E, 1)

(11)

× Pr(R̃I ξ I > r̃I |ξE = rE, y, Hu)

Pr(R̃I ξ I > r∗I |ξE = ξ̂E, yb, Hu)
, (12)

where r∗I = R̃I ξ̂ I , t (ξ ; μ, S, ν) denotes a Student’s t density
for ξ with location parameterμ, scale matrix S, and degrees
of freedom ν, β̂ = (X′X)−1X′y is the maximum likelihood
estimate (MLE) of β and s2 = (y−Xβ̂)′(y−Xβ̂) is the sums
of squares, and the (conditional) distributions are given by

π(β|y, Hu) = t (β; β̂, s2(X′X)−1/(n−k), n−k)

π(β|yb, Hu) = t (β;R−1
I rI , s2(X′X)−1, 1)

π(ξ I |ξE =rE, y, Hu) = t (ξ I ; μN
I , SN

I , n − k)

π(ξ I |ξE =rE, yb, Hu) = t (ξ I ; μ0
I , S

0
I , 1)

with

μN
I = Dβ̂ + D(X′X)−1R′

E(RE(X′X)−1R′
E)−1(rE − RE β̂)

SN
I =

(
1+s−2(rE −RE β̂)′(RE(X′X)−1R′

E)−1(rE −RE β̂)
)

(n−k+qE)−1s2

(D(X′X)−1D′−D(X′X)−1R′
E(RE(X′X)−1R′

E)−1RE(X′X)−1D′)

S0I = s2

1+qE (D(X′X)−1D′−D(X′X)−1R′
E(RE(X′X)−1R′

E)−1RE(X′X)−1D′),

Proof Appendix A.
Note that the factors in Eqs. 9 and 12 are multivariate

Savage–Dickey density ratio’s (Dickey 1971; Wetzels,
Grasman, & Wagenmakers, 2010; Mulder et al. 2010).
These ratios have an analytic expression because the
marginal posterior and default prior have multivariate
Student’s t distributions. In R, these can be computed using
the dmvt function in the mvtnorm-package (Genz et al.,
2016).

The ratios of (conditional) probabilities in Eqs. 10 and 12
can also be computed in a straightforward manner. If R̃I is
of full row-rank, then the transformed parameter vector, say,
ηI = R̃I ξ I has a Student’s t distribution so that Pr(R̃I ξ I >

r̃I |ξE = rE, y, Hu) = Pr(ηI > r̃I |ξE = rE, y, Hu) can
be computed using the pmvt function from the mvtnorm-
package (Genz et al., 2016). If the rank of R̃I is lower than

qI , then the probability can be computed as the proportion
of draws from an unconstrained Student’s t distribution
satisfying the order constraints.

The posterior quantities in the numerators reflect the
relative fit of a constrained hypothesis, denoted by “f ”,
relative to the unconstrained hypothesis: a larger posterior
probability implies a good fit of the order constraints
and a large posterior density at the null value indicates
a good fit of a precise hypothesis. The prior quantities
in the denominators reflect the relative complexity of a
constrained hypothesis, denoted by “c”, relative to the
unconstrained hypothesis: a small prior probability implies
a relatively small inequality constrained subspace, and thus
a ‘simple’ hypothesis, and a small prior density at the null
value corresponds to a large spread (variance) of possible
values under the unconstrained alternative implying the
null hypothesis is relatively simple in comparison to the
unconstrained hypothesis.

Figure 1 gives more insight about the nature of the
expressions in Eqs. 9 to 12 in Lemma 1 for an equality
constrained hypothesis, H1 : β1 = β2 = 0 (upper panels),
an inequality constrained hypothesis, H2 : β > 0 (middle
panels), and hypothesis with an equality constraint and an
inequality constraint, H3 : β1 > β2 = 0 (lower panels). The
Bayes factor for H1 against the unconstrained hypothesis
Hu in Eq. 9 corresponds to the ratio of the unconstrained
posterior density and the unconstrained default prior (which
has a multivariate Cauchy distribution centered at the null
value) evaluated at the null value. The Bayes factor for H2

against Hu in Eq. 10 corresponds to the ratio of posterior
and default prior probabilities that the constraints hold under
Hu. In the case of independent predictors, for example, the
prior probability would be equal .25 as a result of centering
the default prior at 0. The inequality constrained hypothesis
would then be quantified as four times less complex than
the unconstrained hypothesis. Finally, for a hypothesis with
equality and inequality constraints, H3 : β1 > β2 = 0, the
Bayes factor in Eqs. 11–12 corresponds to the ratio of the
surfaces of cross section of the posterior and prior density
on the line β1 > 0, β2 = 0.

The default Bayes factors between these hypotheses are
computed for a simulated data set with MLEs (β̂1, β̂2) =
(.7, .03) (Appendix B) that results in B1u = f E

1
cE
1

= 0.061
0.159 =

0.383, B2u = f I
2

cI
2

= 0.546
0.250 = 2.183, B3u = f E

3
cE
3

× f
I |E
3

c
I |E
3

=
1.608
0.318 × 0.996

0.500 = 10.061. As will be explained in the next
section, it is recommendable to include the complement
hypothesis in an analysis. The complement hypothesis
covers the subspace of R

2 that excludes the subspaces
under H1, H2, and H3. In this example, the Bayes factor
of the complement hypothesis against the unconstrained

hypothesis equals Bcu = 1−f I
2

1−cI
2

= 0.454
0.750 = 0.606.
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f1 c2
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β10

H : β  = β  = 01 1 2
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H : β  > β  = 03 1 2

2
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Fig. 1 Graphical representation of the default Bayes factor for H1 :
β1 = β2 = 0 (upper panels), H2 : β > 0 (middle panels), and
H3 : β1 > β2 = 0 (lower panels) as the ratios of the posterior (red

thin lines) and prior (black thick lines) density at the null value, the
posterior and prior probabilities, and the surfaces of the cross sections
of the posterior and prior density, respectively

After having obtained the default Bayes factor of each
hypothesis against the unconstrained hypothesis, Bayes
factors between the hypotheses of interest can be obtained
through the transitivity property of the Bayes factor, e.g.,
B31 = B3u

B1u
= 10.061

.383 = 26.299. This implies that there
is strong evidence for H3 relative to H1, as the data were
approximately 26 times more likely to have been produced
under H3 than under H1.

Once the default Bayes factors of the hypotheses of
interest against the unconstrained hypothesis are computed
using Lemma 1, posterior probabilities can be computed
for the hypotheses. In the case of, say, four hypotheses of

interest against, the posterior probability that hypothesis Ht

is true can be obtained via

Pr(Ht |y) = BtuPr(Ht )

B1uPr(H1) + B2uPr(H2) + B3uPr(H3) + BcuPr(Hc)
,

(13)

for t = 1, 2, or 3, where Pr(Ht ) denotes the prior
probability of hypothesis Ht , i.e., the probability that Ht

is true before observing the data. As can be seen, the
posterior probability is a weighted average of the Bayes
factors weighted with the prior probabilities. Throughout
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this paper, we will work with equal prior probabilities, but
other choices may be preferred in specific applications (e.g.,
Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011).
For the example data from Appendix B and Fig. 1, the
posterior probabilities would be equal to P(H1|y) = 0.029,
P(H2|y) = 0.165, P(H3|y) = 0.760, and P(Hc|y) =
0.046. Based on these outcomes, we would conclude that
there is most evidence for H3 that the effect of the first
predictor is positive and the effect of the second predictor is
zero with a posterior probability of .76. In order to draw a
more decisive conclusion (e.g., when obtaining a posterior
probability for a hypothesis larger than, say, .99) more data
are needed.

Software

The Bayes factor testing criterion for evaluating equality
and order-constrained hypotheses was implemented in
a new R package called ‘lmhyp’ to ensure general
utilization of the methodology.3 As input, the main function
‘test hyp’ needs a fitted linear regression modeling
object from the lm-function as well as a string that specifies
the constrained hypotheses of interest.

As output, the function provides the default Bayes factors
between all pairs of hypotheses. By default a complement
hypothesis is also included in the analysis. For example,
when testing the hypotheses, say, H1 : β1 > β2 > β3 > 0
versus H2 : β1 = β2 = β3 > 0, a third complement
hypothesis H3 will be automatically added, which covers
the remaining parameter space, i.e., R

3 excluding the
subspaces under H1 and H2. The reason for including
the complement hypothesis is that Bayes factors provide
relative measures of evidence between the hypotheses. For
example, it may be that H2 receives, say, 30 times more
evidence than H1, i.e., B21 = 30, which could be seen as
strong evidence for H2 relative to H1, yet it may be that H2

still badly fits to the data in an absolute sense. In this case,
the evidence for the complement hypothesis H3 against H2

could be very large, say, B32 = 100.
Besides the default Bayes factor, the function also

provides the posterior probabilities of the hypotheses.
Posterior probabilities may be easier for users to interpret
than Bayes factors because the posterior probabilities sum
up to 1. Note that when setting equal prior probabilities
between two hypotheses, the posterior odds of the
hypotheses will be equal to the Bayes factor. By default,
all hypotheses receive equal prior probabilities. Thus, in the
case of T hypotheses, then P(Ht) = 1

T
, for t = 1, . . . , T .

Users can manually specify the prior probabilities by using

3Run ‘devtools::install github("jaeoc/lmhyp")’ in R
to install the package.

the ‘priorprobs’ argument. In the remaining part of the
paper, we will work with the default setting of equal prior
probabilities. A step-by-step guide for using the software
will be provided in the following section.

Application of the new testing procedure
using the software package ‘lmhyp’

In this section, we illustrate how to use the ‘lmhyp’
package to test hypotheses, by applying the procedure to
two empirical examples from psychology. We begin by
describing the published research. In the two following
subsections, we then formulate hypotheses for each example
and test these using the function test hyp from our
R-package lmhyp.4

For the first example, we use data from a study of
mental health workers in England (Johnson et al., 2012).
The data of Johnson et al. measured health workers’ well-
being and its correlates, such as perceived discrimination
from managers, coworkers, patients, and visitors. Well-
being was operationalized by scales measuring anxiety,
depression, and job dissatisfaction, the first two scales
consisting of three items and the latter of five. The perceived
discrimination variables are binary variables that were
meant to capture whether the worker believed they had
been discriminated against from the four different sources in
the last 12 months. This example demonstrates hypothesis
testing in regards to single variables and the “exploratory”
option of the test hyp function.

Our second empirical example comes from research
by Carlsson and Sinclair (2017). Over four experiments,
Carlsson and Sinclair compare two theoretical explanations
for perceptions of gender discrimination in hiring, although
we use data from only the first experiment (available at
https://osf.io/qcdgp/). In this study, Carlsson and Sinclair
showed university students two fictive job applications
from a man and a woman for a position as either a
computer specialist or nurse. Participants were told that the
fictive job applications had been sent to real companies
as part of a previous study, but that only one of the two
applicants had been invited to a job interview despite
being equally qualified. A two-item scale was then used
to measure participants’ belief the outcome was due to
gender discrimination. Several potential correlates were also
measured using two-item scales, such as the individual’s
belief that (wo)men are generally discriminated against,
their expectation that they are gender-stereotyped by others
(‘stigma consciousness’) and the extent to which they

4The R-script used to produce the results in this section is available at
https://osf.io/g8c9p/

https://osf.io/qcdgp/
https://osf.io/g8c9p/
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identify as feminists. This example demonstrates testing
hypotheses involving multiple variables.

Hypothesis testing of single effects
in organizational psychology

In our first example, we illustrate how our approach
might be used to explore competing hypotheses for single
variables. It is common when testing the effect of an
independent variable in regression to look at whether it
is significantly different from zero, or to do a one-sided
test of a positive versus a negative effect. When using a
Bayes factor test, we can test all these hypotheses directly
against each other and compare the relative evidence for
each hypothesis.

Braeken et al. (2015) theorized that workplace discrimi-
nation has a negative impact on workers’ well-being. Here,
we are testing this expectation against a positive effect and
a zero effect, while controlling for discrimination from dif-
ferent sources. For example, in the case of discrimination by
managers we have

H1 : βmanager < 0
H2 : βmanager = 0
H3 : βmanager > 0,

(14)

while controlling for discrimination by coworkers, patients,
and visitors through the following regression model

yanxiety,i = β0+βmanagerXmanager,i +βcoworkersXcoworker,i

+βpatientXpatient,i +βvisitorXvisitor,i +errori

where the β’s are the regression effects of the various
sources of discrimination on anxiety.

Evaluating these three hypotheses in R is straightforward
with the test hyp function from our R-package lmhyp.
This function takes as arguments ‘object’, a fitted object
using the lm function, ‘hyp’, a string vector specifying
one or several hypotheses (separated by semicolons),
‘priorprob’, specifying the prior probabilities of each
hypotheses (by default equal, priorprob = 1), and
‘mcrep’, an integer that specifies the number of draws
to compute the prior and posterior probabilities in the
(unusual) case the matrix with the coefficients of the order
constraints is not of full row rank (by default mcrep=1e6).
In addition, the argument hyp also allows as input the string
”exploratory”, which will test the likelihood of the data for
a zero, positive, or negative effect of all variables in the
regression model, including the intercept. We will make
use of this functionality below, after first discussing how to
test the three hypotheses for a single variable. To test the
hypotheses, we first fit a linear model on the variables as
usual:
fit <- lm(anx ˜ discM + discC + discP

+ discV, data = dat1)

Next, hypotheses are specified in R as character strings
using the variable names from the fitted linear model. It is
possible to test the traditional null hypothesis of βmanager =
0 against the two-sided alternative example βmanager �= 0
by writing
H2 <- "discM = 0"

Note that the complement hypothesis, βmanager �= 0,
is automatically included. However, by testing whether
the effect is zero, positive, or negative simultaneously, we
obtain a more complete picture of the possible existence
and direction of the population effect. This can be achieved
by specifying all hypotheses as a single character vector in
which the hypotheses are separated by semicolons:
Hyp1v2v3 <- "discM < 0; discM = 0; discM > 0"

Note that spacing does not matter. Once the hypotheses
have been specified, they are tested by simply inputting
them together with the fitted linear model object into the
function test hyp:
result <- test_hyp(fit, Hyp1v2v3)

This will compute the default Bayes factors from
Lemma 1 between the hypotheses, as well as the posterior
probabilities for the hypotheses. The posterior probabilities
are printed as the primary output:
## Hypotheses:

##

## H1: "discM<0"

## H2: "discM=0"

## H3: "discM>0"

##

## Posterior probability of each hypothesis

(rounded):

##

## H1: 0.000

## H2: 0.000

## H3: 1.000

As can be seen, the evidence is overwhelmingly in favor
of a positive effect of discrimination from managers on
anxiety amongst health workers. In fact, when concluding
that H3 : βmanager > 0 is true, we would have a conditional
error probability of drawing the wrong conclusion of
approximately zero. To perform this test for all regression
effects, one simply needs to set the second hyp argument
equal to "exploratory":

result <- test_hyp(fit, "exploratory")

This option assumes that each hypothesis is equally likely
a priori. In the current example, we then get the following
output:

## Hypotheses:

##

## H1: "X < 0"

## H2: "X = 0"

## H3: "X > 0"

##



Behav Res

## Posterior probabilities for each variable

(rounded),

## assuming equal prior probabilities:

##

## H1 H2 H3

## X < 0 X = 0 X > 0

## (Intercept) 0.000 0.000 1.000

## discM 0.000 0.000 1.000

## discC 0.005 0.780 0.216

## discP 0.003 0.628 0.369

## discV 0.007 0.911 0.082

The posterior probabilities for discrimination by man-
agers are the same as when tested separately. In regards to
the other variables, there seems to be positive evidence that
there is no effect of discrimination by coworkers, patients,
or visitors on anxiety. Note that the evidence for this is not
as compelling as for the effect of discrimination by man-
agers, as can be seen from the conditional error probabilities
of .216, .369, and .082, respectively, which are quite large.
Therefore more data are needed in order to draw more deci-
sive conclusions. Note here that classical significance tests
cannot be used for quantifying the evidence in the data in
favor of the null; the classical test can only be used to fal-
sify the null. When a null hypothesis cannot be rejected,
we are left in a state of ignorance because we cannot reject
the null but also not claim there is evidence for the null
(Wagenmakers, 2007).

Because the prior probabilities of the hypotheses are
equal, the ratio of the posterior probabilities of two
hypotheses corresponds with the Bayes factor, e.g., B23 =
Pr(H2|y)
Pr(H3|y) = .780

.216 = 3.615, for the effect of discrimination
by coworkers. By calling BF matrix, we obtain the
default Bayes factors between all pairs of hypotheses. For
convenience, the printed Bayes factors are rounded to three
digits, though exact values can be calculated from the
posterior probabilities (unrounded posterior probabilities
are available by calling result$post prob). The Bayes
factor matrix for discC (discrimination from coworkers)
can be obtained by calling

result$BF_matrix$discC

## H1 H2 H3

## H1 1.000 0.006 0.022

## H2 162.367 1.000 3.615

## H3 44.913 0.277 1.000

Hence, the null hypothesis of no effect is 162 times
more likely than hypothesis H1 which assumes a negative
effect (B21 = 162.367), but only 3.6 times more likely
than hypothesis H3, which assumes a positive effect (B23 =
3.615). Similar Bayes factor matrices can be printed for all
variables when using the “exploratory” option.

To summarize the first application, regressing the effects
of perceived discrimination from managers, coworkers,
patients, and visitors on the anxiety levels of English health

workers, we found very strong evidence for a positive effect
of perceived discrimination from managers on anxiety,
mild-to-moderate evidence for no effect of discrimination
from coworkers, patients, and visitors on anxiety. More
research is needed to draw clearer conclusions regarding the
existence of a zero or positive effect of these latter three
variables.

Hypothesis testing of multiple effects in social
psychology

In our second example, we illustrate how our testing
procedure can be used when testing multiple hypotheses
with competing equal and order constraints on the effect
of different predictor variables. Carlsson and Sinclair
(2017) compared two different theoretical explanations
for perceptions of gender discrimination in hiring for the
roles of computer specialist and nurse. To test individual
differences, they regressed perceptions of discrimination
towards female victims on belief in discrimination against
women, stigma consciousness, and feminist identification,
while controlling for gender and belief in discrimination
against men. As a regression equation, this can be expressed
as

ydiscriminationW,i = β0 + βbelief WXbelief W,i

+βstigmaXstigma,i

+βf eministXf eminist

+βgenderXgender,i

+βbelief MXbelief M,i + errori .

where the β’s are standardized regression effects of the vari-
ables on perceived discrimination. Since in this subsection
we will compare the beta-coefficients of different variables
against each other, it facilitates interpretation if they are on
the same scale. As such, we standardize all variables before
entering them in the model.

The two theories that Carlsson and Sinclair (2017)
examined make different explanations for what individual
characteristics are most important to perceptions of gender
discrimination. The ‘prototype explanation’ suggests that
what matters are the individual’s beliefs that the gender
in question is discriminated against, whereas the ‘same-
gender bias explanation’ suggests that identification with
the victim is most important. In our example, the victim
of discrimination is female and Carlson and Sinclair
operationalize identification with the victim as stigma
consciousness and feminist identity. Note that neither theory
makes any predictions regarding the control variables
(gender and general belief that men are discriminated
against). A first hypothesis, based on the prototype
explanation, might thus be that belief in discrimination of
women in general is positively associated with the belief
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that the female applicant has been discriminated against,
whereas stigma consciousness and feminist identity have
no effect on this belief. Formally, this can be expressed
as

H1 : βbelief W > βstigma = βf eminist = 0 (15)

which is equivalent to:

H1 : βbelief W > (βstigma, βf eminist ) = 0 (16)

Alternatively, we might expect all three variables to
have a positive effect on the dependent variable (all β’s >

0), but that, in accordance with the prototype explanation,
a belief that women are generally discriminated against
should have a larger effect on perceptions of discrimination
than identifying with the job applicant. Formally this
implies:

H2 : βbelief W > (βstigma, βf eminist ) > 0 (17)

A third hypothesis, based on the same-gender bias
explanation, would be the reverse of the H1, namely that
stigma consciousness and feminist identity are positively
associated with the outcome while a general belief in
discrimination against women has no impact on the
particular case. That is:

H3 : (βstigma, βf eminist ) > βbelief W = 0 (18)

In this example, we have thus specified three contradict-
ing hypotheses regarding the relationships between three
variables and wish to know which hypothesis receives most
support from the data at hand. However, there is one addi-
tional implied hypothesis in this case: the complement. The
complement, Hc, is the hypothesis that none of the specified
hypotheses are true. The complement exists if the specified
hypotheses are not exhaustive, that is, do not cover the entire
parameter space. In other words, the complement exists
if there are possible values for the regression coefficients,
which are not contained in the hypotheses, for example,
(β1, β2, β3) = (−1, −1, −1) is a combination of effects
which do not satisfy the constraints of either H1, H2, or H3.
Thus, the interest is in testing the following hypotheses:

H1 : βbelief W > (βstigma, βf eminist ) = 0

H2 : βbelief W > (βstigma, βf eminist ) > 0

H3 : (βstigma, βf eminist ) > βbelief W = 0

Hc : not H1, H2, H3

As before, we begin by fitting a linear regression on the
(standardized) variables:
fit <- lm(discW ˜ beliefW + stigma+ feminist

+ beliefM + gender, data = dat2)

Next, we specify the hypotheses separated by semicolons as
a character vector, here on separate lines for space reasons:
hyp1v2v3 <- "beliefW > (stigma,feminist)= 0;

beliefW > (stigma, feminist) > 0;

(stigma, feminist) > beliefW = 0"

The complement does not need to be specified, as the
function will include it automatically if necessary. For this
example, we get the following output:
## Hypotheses:

##

## H1: "beliefW>(stigma,feminist)=0"

## H2: "beliefW>(stigma,feminist)>0"

## H3: "(stigma,feminist)>beliefW=0"

## Hc: "Not H1-H3"

##

## Posterior probability of each hypothesis

(rounded):

##

## H1: 0.637

## H2: 0.359

## H3: 0.000

## Hc: 0.004

From the output posterior probabilities, we see that H1

and H2, both based on the prototype explanation, received
the most support, whereas H3, which was derived from the
same-gender bias model, and the complementary hypothesis
are both highly unlikely. These results can be succinctly
reported as: “Using a default Bayes factor approach, we
obtain overwhelming evidence that either hypothesis H1

or H2 is true with posterior probabilities of approximately
.637, .359, .000, and .004 for H1, H2, H3, and H4,
respectively.” Printing the Bayes Factor matrix yields:
result$BF_{m}atrix

## H1 H2 H3 Hc

## H1 1.000 1.776 1634.299 163.201

## H2 0.563 1.000 920.205 91.892

## H3 0.001 0.001 1.000 0.100

## Hc 0.006 0.011 10.014 1.000

We see that the evidence for both H1 and H2 is very
strong compared to the complement and in particular
compared to H3, but that H1 is only 1.8 times as likely as
H2 (B12 = 1.777).

To summarize the second application, our data demon-
strated strong evidence for the prototype explanation and
a lack of support for the same-gender bias explanation
in explaining perceptions of discrimination against female
applicants in the hiring process of computer specialist and
nurses. The relative evidence for the prototype explanation
depended on its exact formulation, but was at least 919 times
stronger than for the same-gender bias explanation, and 91
times stronger than for the complement. However, further
research is required to determine whether identification with
a female victim has zero or a positive effect on perceived
discrimination.
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Supplementary output

When saving results from the test hyp function to an
object it is possible to print additional supplementary
output. This output is provided to support a deeper under-
standing of the method and the primary output outlined in
the above subsections. We illustrate these two additional

commands using the example in Section “Hypothesis test-
ing of multiple effects in social psychology”. Calling
BF computation prints the measures of relative fit “f ”
and complexity “c” in Eqs. 9 – 12 of the Bayes factor of each
hypothesis against the unconstrained hypothesis. Thus, for
the data and hypotheses of “Hypothesis testing of multiple
effects in social psychology” we get

result$BF_computation

## c(E) c(I|E) c f(E) f(I|E) f B(t,u) PP(t)

## H1 0.151 0.500 0.075 4.398 1.000 4.398 58.265 0.639

## H2 NA 0.020 NA NA 0.650 NA 32.525 0.357

## H3 0.273 0.201 0.055 0.002 0.985 0.002 0.036 0.000

## Hc NA 0.980 NA NA 0.350 NA 0.357 0.004

where c(E) is the prior density at the null value, c(I|E)
the prior probability that the constraints hold, c the
product of these two, and the columns labeled as f(E),
f(I|E), and f have similar interpretations for the posterior
quantities. B(t,u) is the Bayes factor of hypothesis Ht

against the unconstrained (Hu) and PP(t) is the posterior
probability of hypothesisHt . We rounded the output to three
decimals for convenience. Cells with “NA” indicate that a
column is “Not Available” to a particular hypothesis. For
example, because H2 contains only inequality comparisons
it has a prior (and posterior) probability but no prior
density evaluated at a null value. Hypothesis H1 and H3

contain both equality and inequality comparisons and thus
has both prior and posterior densities and probabilities.
The Bayes factor for H1 and H3 against Hu can thus be
calculated as B1u = 4.398

0.075 = 58.265 and B3u = 0.002
0.055 =

0.036 (see column B(t,u)). The posterior hypothesis
probabilities are calculated using Eq. 13 by setting equal
prior probabilities, i.e., Pr(Ht |y) = Btu∑

t ′ Bt ′u
, yielding, for

example, Pr(H1|y) = 58.265
58.265+32.525+0.036+0.357 = 0.639 (as

indicated in column PP(t)).
If RI is not of full row rank, the posterior and

prior that the inequality constraints hold are computed
as the proportion of draws from unconstrained Student’s
t distributions. Under these circumstances, there will be
a, typically small, numerical Monte Carlo error. The
90% credibility intervals of the numerical estimate of the
Bayes factors of the hypotheses against the unconstrained
hypothesis can be obtained by calling
result$BFu_{C}I

## B(t,u) lb. (5%) ub. (95%)

## H1 58.265 58.169 58.360

## H2 32.525 32.152 32.910

## H3 0.036 NA NA

## Hc 0.357 0.356 0.358

where B(t,u) is the Bayes factor of hypothesis t

against the unconstrained (u), lb. (5%) is the lower
bound of the 90% credibility interval estimate of the Bayes

factor and ub. (95%) is the upper bound. Credibility
intervals are only printed when the computed Bayes factors
have numerical errors. If the user finds the Monte Carlo
error to be too large, they can increase the number of draws
from the Student’s t distributions by adjusting the input
value for the mcrep argument (default 106 draws).

Discussion

The paper presented a new Bayes factor test for evaluat-
ing hypotheses on the relative effects in a linear regression
model. The proposed testing procedure has several useful
properties such as its flexibility to test multiple equality
and/or order constrained hypotheses directly against each
other, its intuitive interpretation as a measure of the relative
evidence in the data between the hypotheses, and its fast
computation. Moreover, no prior information needs to beman-
ually specified about the expected magnitude of the effects
before observing the data. Instead, a default procedure is
employed where a minimal fraction of the data is used for
default prior specification and the remaining fraction is used
for hypothesis testing. A consequence of this choice is that
the statistical evidence cannot be updated using Bayes’ the-
orem when observing new data. This is common in default
Bayes factors (e.g., O’Hagan, 1997; Berger & Pericchi,
2004). Instead, the statistical evidence needs to be recom-
puted when new data are observed. This, however, is not
a practical problem because of the fast computation of the
default Bayes factor due to its analytic expression.

Furthermore, the readily available lmhyp-package can
easily be used in combination with the popular lm-package
for linear regression analysis. The new method will allow
researchers to perform default Bayesian exploratory anal-
yses about the presence of a positive, negative, or zero
effect and to perform default Bayesian confirmatory
analyses where specific relationships are expected
between the regression effects which can be translated to
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equality and order constraints. The proposed test will there-
fore be a valuable contribution to the existing literature on
Bayes factor tests (e.g., Klugkist, Laudy, & Hoijtink, 2005;
Rouder, Speckman, Sun, Morey, & Iverson, 2009; Klugk-
ist, Laudy, & Hoijtink, 2010; van de Schoot et al. 2011;
Wetzels & Wagenmakers 2012; Rouder, Morey, Speckman,
& Province, 2012; Rouder & Morey 2015; Mulder et al.
2012; Mulder 2014a; Gu, Mulder, Decovic, & Hoijtink,
2014; Mulder 2016; Böing-Messing, van Assen, Hofman,
Hoijtink, & Mulder, 2017; Mulder & Fox 2018), which are
gradually winning ground as alternatives to classical signif-
icance tests in social and behavioral research. Due to this
increasing literature, a thorough study about the qualitative
and quantitative differences between these Bayes factors
is called for. Another useful direction for further research
would be to derive Bayesian (interval) estimates under the
hypothesis that receives convincing evidence from the data.
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Appendix A: Proof of Lemma 1

A derivation is given for the prior adjusted default Bayes
factor for a hypothesis H1 : REβ = rE , RIβ > rI against
an unconstrained hypothesis Hu : β ∈ R

k in Eq. 9 – 10.

Based on the reparameterization ξ =
[

ξE

ξ I

]
=

[
RE

D

]
β in

Eq. 5, the hypothesis is equivalent toH1 : ξE = rE , R̃I ξ I >

r̃I against an unconstrained hypothesis Hu : ξ ∈ R
k .

The marginal likelihood under the constrained hypothesis
H1 is defined as in the fractional Bayes factor (O’Hagan,
1995) with the exception that we integrate over an adjusted
integration region (Mulder, 2014b; Böing-Messing et al.,
2017). This adjustment ensures that the implicit default
prior is centered on the boundary of the constrained space.
The marginal likelihood under H1 is defined by

p1(y, b)=
∫∫

R̃I ξ I >r̃I
p(y|ξE =rE, ξ I , σ

2)πN
u (ξ I , σ

2)dξ I dσ 2

∫∫
R̃I ξ I >r∗I

p(y|ξE = ξ̂E, ξ I , σ
2)bπN

u (ξ I , σ
2)dξ I dσ 2

. (19)

As can be seen, the adjustment implies that in the
denominator the fraction of the likelihood is evaluated at ξ̂E

instead of rE and the integration region equals

R̃I (ξ I − ξ̂ I + μ0
I ) > r̃I ⇔ R̃I ξ I > R̃I ξ̂ I = r∗

I ,

because R̃Iμ
0
I = r̃I , instead of R̃I ξ I > r̃I . Note that ξ̂ I =

Dβ̂. This adjustment of the fractional Bayes factor ensures
that the proposed default Bayes factor is computed using an
implicit default prior that is centered on the boundary of the
constrained space, following Jeffreys’ heuristic argument
(see Mulder 2014b, for a more comprehensive motivation).
Furthermore, this ensures that the complexity of an order-
constrained hypothesis is properly incorporated in the Bayes
factor (Mulder, 2014a). The marginal likelihood under Hu

is defined by

pu(y, b) =
∫∫∫

p(y|ξE, ξ I , σ
2)πN

u (ξE, ξ I , σ
2)dξEdξ I dσ 2

∫∫∫
p(y|ξE, ξ I , σ

2)bπN
u (ξE, ξ I , σ

2)dξEdξ I dσ 2
. (20)

The fraction b will be set to k+1
n

because k + 1
observations are needs to obtain a finite marginal likelihood
when using a noninformative prior πN

u (ξE, ξ I , σ
2) = σ−2

under Hu.
The default Bayes factor is then given by

B1u,b = p1(y, b)

pu(y, b)
=

∫∫
R̃I ξ I >r̃I

p(y|ξE = rE, ξ I , σ
2)πN

u (ξ I , σ
2)dξ I dσ 2

∫∫
R̃I ξ I >r∗I

p(y|ξE = ξ̂E, ξ I , σ
2)bπN

u (ξ I , σ
2)dξ I dσ 2

/
∫∫∫

p(y|ξE, ξ I , σ
2)πN

u (ξE, ξ I , σ
2)dξEdξ I dσ 2

∫∫∫
p(y|ξE, ξ I , σ

2)bπN
u (ξE, ξ I , σ

2)dξEdξ I dσ 2

=
∫∫

R̃I ξ I >r̃I

p(y|ξE = rE, ξ I , σ
2)πN

u (ξ I , σ
2)∫∫∫

p(y|ξE, ξ I , σ
2)πN

u (ξE, ξ I , σ
2)dξEdξ I dσ 2

dξ I dσ 2/
∫∫

R̃I ξ I >r∗I

p(y|ξE = ξ̂E, ξ I , σ
2)bπN

u (ξ I , σ
2)∫∫∫

p(y|ξE, ξ I , σ
2)bπN

u (ξE, ξ I , σ
2)dξEdξ I dσ 2

dξ I dσ 2

=
∫∫

R̃I ξ I >r̃I
πu(ξE = rE, ξ I , σ

2|y)dξ I dσ 2/
∫∫

R̃I ξ I >r∗I
πu(ξE = ξ̂E, ξ I , σ

2|yb)dξ I dσ 2

= Pr(R̃I ξ I > r̃I |y, ξE = rE)

Pr(R̃I ξ I > r∗
I |y, ξE = ξ̂E)

× πu(ξE = rE |y)
πu(ξE = ξ̂E |yb)

. (21)

Furthermore, using standard calculus it can be shown that
the marginal posterior for β for a fraction b of the data and
a noninformative prior has a Student’s t distribution

πu(β|yb) ∝
∫

p(y|β, σ 2)bπN
u (β, σ 2)dσ 2

∝ t (β; β̂, s2(nb − k)−1(X′X)−1, nb − k),

and therefore, because ξ = Tβ|yb, it holds that

πu(ξ |yb) = t (ξ ; ξ̂ , s2(nb − k)−1T(X′X)−1T′, nb − k),

http://creativecommons.org/licenses/by/4.0/
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where T =
[
RE

D

]
, ξ̂ = (ξ̂

′
E, ξ̂

′
I )

′ with ξ̂E = RE β̂ and

ξ̂ I = Dβ̂, and t (ξ ;m,K, ν) denotes a Student’s t distribu-
tion for ξ with location parametersm, scale matrixK, and ν

degrees of freedom. Then it is well known that the marginal
distribution of ξE and the conditional distribution of ξ I |ξE

also have Student’s t distributions (e.g., Press 2005) given
by

ξE |yb ∼ t (ξ̂E, s2(nb−k)−1RE(X′X)−1R′
E, nb−k)(22)

ξ I |ξE, yb ∼ t (mI |E,KI |E, ν), (23)

with

mI |E = Dβ̂ + s−2(nb − k)D(X′X)−1R′
E(RE(XX)−1RE)−1(ξE − ξ̂E)

KI |E = nb − k + s−2(nb − k)(ξE − ξ̂E)′(R′
E(X′X)−1RE)−1(ξE − ξ̂E)

nb − k + qE

(s2(nb − k)−1D(X′X)−1D′ −
s2(nb − k)−1D(X′X)−1R′

E(RE(X′X)−1R′
E)−1RE(X′X)−1D).

Thus, when plugging in b = 1 and ξE = rE in Eqs. 22
and 23, and then in Eq. 21, gives the numerators in Eqs. 9
and 10, and plugging in b = k+1

n
and ξE = ξ̂E in Eqs. 22

and 23, and then in Eq. 21, gives the denominators in Eqs. 9
and 10, which completes the proof.

Appendix B: Example analysis for Fig. 1

# consider a regression model with two predictors:

# y_{i} = beta_{0} + beta_{1} * x1_{i} + beta_{2} * x2_{i} + error

library(lmhyp)

n <- 20 #sample size

X <- mvtnorm::rmvnorm(n,sigma=diag(3))

# For this example we transform X to get exact independent

# predictor variables and errors. X <- X - rep(1,n)%*%t(apply(X,2,mean))

X <- X%*%solve(chol(t(X)%*%X))*sqrt(n)

errors <- X[,3] #a population variance of 1

X <- X[,1:2]

beta <- c(.7,.03) #data generating regression effects

y <- 1 + X%*%beta + errors

df1 <- data.frame(y=y,x1=X[,1],x2=X[,2])

fit1 <- lm(y˜x1+x2,df1)

test1 <- test_{h}yp(fit1,"x1=x2=0;(x1,x2)>0;x1>x2=0")

test1 #get posterior probabilities test1$BF_matrix #get Bayes factors

test1$ BF_{c}omputation #get details on the computations

test1$BFu_CI #get 90% credibility intervals, if applicable
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